Modelling and Stability Assessment of the Rock Cliffs and Xrobb l-Ġħaġin Neolithic Structure in Malta
Abstract
:1. Introduction
2. Object of Study
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mania, K.; Psalti, A.; Lala, D.M.; Tsakoumaki, M.; Polychronakis, A.; Rempoulaki, A.; Xinogakis, M.; Maravelakis, E. Combining 3D Surveying with Archaeological Uncertainty: The Metopes of the Athenian Treasury at Delphi. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021; pp. 1–4. [Google Scholar] [CrossRef]
- García Sánchez, F.; García Sánchez, H.; Ribalaygua, C. Cultural heritage and sea level rise threat: Risk assessment of coastal fortifications in the Canary Islands. J. Cult. Herit. 2020, 44, 211–217. [Google Scholar] [CrossRef]
- Borg, R.P.; Grima, R. Xrobb l-Għaġin revisited: Recovery and discovery. Malta Archaeol. Rev. 2010, 10, 40–45. [Google Scholar]
- Psalti, A.; Tsakoumaki, M.; Mamaloukaki, C.; Xinogalos, M.; Bolanakis, N.; Kavallaris, C.; Polychronakis, A.; Mania, K.; Maravelakis, E. Advanced Digitization Methods for the 3D Visualization and Interpretation of Cultural Heritage: The Sphinx of the Naxians at Delphi. In Communications in Computer and Information Science; Springer: Cham, Switzerland, 2023; Volume 1889, pp. 55–64. [Google Scholar] [CrossRef]
- Pantò, B.; Macorini, L.; Izzuddin, B.A. A Two-Level Macroscale Continuum Description with Embedded Discontinuities for Nonlinear Analysis of Brick/Block Masonry. Available online: https://www.researchgate.net/publication/356186760 (accessed on 3 May 2024).
- Ataei, S.; Jahangiri Alikamar, M.; Kazemiashtiani, V. Evaluation of axle load increasing on a monumental masonry arch bridge based on field load testing. Constr. Build. Mater. 2016, 116, 413–421. [Google Scholar] [CrossRef]
- Drosopoulos, G.A.; Stavroulakis, G.E.; Massalas, C.V. Influence of the geometry and the abutments movement on the collapse of stone arch bridges. Constr. Build. Mater. 2008, 22, 200–210. [Google Scholar] [CrossRef]
- Loverdos, D.; Sarhosis, V. Geometrical digital twins of masonry structures for documentation and structural assessment using machine learning. Eng. Struct. 2023, 275, 115256. [Google Scholar] [CrossRef]
- Bamonte, P.; Cardani, G.; Condoleo, P.; Taliercio, A. Crack patterns in double-wall industrial masonry chimneys: Possible causes and numerical modelling. J. Cult. Herit. 2021, 47, 133–142. [Google Scholar] [CrossRef]
- Ursini, A.; Grazzini, A.; Matrone, F.; Zerbinatti, M. From scan-to-BIM to a structural finite elements model of built heritage for dynamic simulation. Autom. Constr. 2022, 142, 104518. [Google Scholar] [CrossRef]
- D’Altri, A.M.; Miranda, S.; Castellazzi, G.; Glisic, B. Numerical modelling-based damage diagnostics in cultural heritage structures. J. Cult. Herit. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Fazio, N.L.; Perrotti, M.; Andriani, G.F.; Mancini, F.; Rossi, P.; Castagnetti, C.; Lollino, P. A new methodological approach to assess the stability of discontinuous rocky cliffs using in-situ surveys supported by UAV-based techniques and 3-D finite element model. Eng. Geol. 2019, 260, 105205. [Google Scholar] [CrossRef]
- Pappalardo, G.; Imposa, S.; Mineo, S.; Grassi, S. Evaluation of the stability of a rock cliff by means of geophysical and geomechanical surveys in a cultural heritage site (south-eastern Sicily). Ital. J. Geosci. 2016, 135, 308–323. [Google Scholar] [CrossRef]
- Wang, S.; Ahmed, Z.; Hashmi, M.Z. Cliff face rock slope stability analysis based on unmanned arial vehicle (UAV) photogrammetry. Geomech. Geophys. Geo-Energ. Geo-Resour. 2019, 5, 333–344. [Google Scholar] [CrossRef]
- Tapkın, S.; Emre, T.; Motsa, S.M.; Drosopoulos, G.A.; Stavroulaki, M.; Maravelakis, E.; Stavroulakis, G. Structural Investigation of Masonry Arch Bridges Using Various Nonlinear Finite-Element Models. Am. Soc. Civ. Eng. 2022, 27, 04022053. [Google Scholar] [CrossRef]
- Motsa, S.M.; Drosopoulos, G.A.; Stavroulaki, M.E.; Maravelakis, E.; Borg, R.P.; Galea, P.; d’Amico, S.; Stavroulakis, G.E. Structural investigation of Mnajdra megalithic monument in Malta. J. Cult. Herit. 2020, 41, 96–105. [Google Scholar] [CrossRef]
- Torelli, G.; D’Ayala, D.; Betti, M.; Bartoli, G. Analytical and numerical seismic assessment of heritage masonry towers. Bull. Earthq. Eng. 2020, 18, 969–1008. [Google Scholar] [CrossRef]
- Kita, A.; Cavalagli, N.; Venanzi, I.; Ubertini, F. A new method for earthquake-induced damage identification in historic masonry towers combining OMA and IDA. Bull. Earthq. Eng. 2021, 19, 5307–5337. [Google Scholar] [CrossRef]
- Wang, X.; Meng, J.; Zhu, T.; Zhang, J. Prediction of Wind Erosion over a Heritage Site: A Case Study of Yongling Mausoleum, China. Built Herit. 2019, 3, 41–57. [Google Scholar] [CrossRef]
- Galanakis, D.; Pocobelli, D.P.; Konstantaras, A.; Mania, K.; Maravelakis, E. Introduction to BIM for Heritage. In Computer-Aided Design: Advances in Research and Applications; Tzetzis, D., Kyratsis, P., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2023; pp. 23–42. [Google Scholar] [CrossRef]
- Galanakis, D.; Pocobelli, D.P.; Konstantaras, A.; Bolanakis, N.; Maravelakis, E. Mesh segmentaion for HBIM applications. In Proceedings of the Chania 3rd International Conference in Electronic Engineering, Information Technology & Education (EEITE), Chania Crete, Greece, 28–30 September 2022. [Google Scholar]
- Maravelakis, E.; Giannioti, G.; Psalti, A.; Tsakoumaki, M.; Pocobelli, D.P.; Xinogalos, M.; Galanakis, D.; Bilalis, N.; Stavroulakis, G.E. 3D Modeling & Analysis Techniques for the Apollo Temple in Delphi. Buildings 2023, 13, 1730. [Google Scholar] [CrossRef]
- Williamson, J.; Nicu, I.C. Photogrammetric measurement of erosion at the sabbath point beothuk site in central Newfoundland, Canada. Sustainability 2020, 12, 7555. [Google Scholar] [CrossRef]
- Lombardo, L.; Tanyas, H.; Nicu, I.C. Spatial modeling of multi-hazard threat to cultural heritage sites. Eng. Geol. 2020, 277, 105776. [Google Scholar] [CrossRef]
- Daryono, L.R.; Nakashima, K.; Kawasaki, S.; Suzuki, K.; Suyanto, I.; Rahmadi, A. Investigation of Natural Beachrock and Physical-Mechanical Comparison with Artificial Beachrock Induced by MICP as a Protective Measure against Beach Erosion at Yogyakarta, Indonesia. Geosciences 2020, 10, 143. [Google Scholar] [CrossRef]
- Stavroulaki, M.E.; Riveiro, B.; Drosopoulos, G.A.; Solla, M.; Koutsianitis, P.; Stavroulakis, G.E. Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry and finite elements. Adv. Eng. Softw. 2016, 101, 136–148. [Google Scholar] [CrossRef]
- Barazzetti, L.; Banfi, F.; Brumana, R.; Gusmeroli, G.; Previtali, M.; Schiantarelli, G. Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simul. Model. Pract. Theory 2015, 57, 71–87. [Google Scholar] [CrossRef]
- Maravelakis, E.; Konstantaras, A.; Kritsotaki, A.; Angelakis, D.; Xinogalos, M. Analysing User Needs for a Unified 3D Metadata Recording and Exploitation of Cultural Heritage Monuments System. In Proceedings of the Advances in Visual Computing: 9th International Symposium, ISVC 2013, Rethymnon, Crete, Greece, 29–31 July 2013. [Google Scholar]
- Alfio, V.S.; Costantino, D.; Pepe, M.; Garofalo, A.R. A Geomatics Approach in Scan to FEM Process Applied to Cultural Heritage Structure: The Case Study of the ‘Colossus of Barletta’. Remote Sens. 2022, 14, 664. [Google Scholar] [CrossRef]
- Funari, M.F.; Hajjat, A.E.; Masciotta, M.G.; Oliveira, D.V.; Lourenço, P.B. A parametric scan-to-FEM framework for the digital twin generation of historic masonry structures. Sustainability 2021, 13, 11088. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D.; Alfio, V.S.; Restuccia, A.G.; Papalino, N.M. Scan to BIM for the digital management and representation in 3D GIS environment of cultural heritage site. J. Cult. Herit. 2021, 50, 115–125. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D. Uav photogrammetry and 3d modelling of complex architecture for maintenance purposes: The case study of the masonry bridge on the sele river, Italy. Period. Polytech. Civ. Eng. 2021, 65, 191–203. [Google Scholar] [CrossRef]
- Pocobelli, D.P.; Boehm, J.; Bryan, P.; Still, J.; Grau-Bové, J. BIM for heritage science: A review. Herit. Sci. 2018, 6, 30. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D.; Garofalo, A.R. An efficient pipeline to obtain 3D model for HBIM and structural analysis purposes from 3D point clouds. Appl. Sci. 2020, 10, 1235. [Google Scholar] [CrossRef]
- Galanakis, D.; Maravelakis, E.; Pocobelli, D.P.; Vidakis, N.; Petousis, M.; Konstantaras, A.; Tsakoumaki, M. SVD-based point cloud 3D stone by stone segmentation for cultural heritage structural analysis—The case of the Apollo Temple at Delphi. J. Cult. Herit. 2023, 61, 177–187. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
Layer A: Upper Globigerina | Layer B: Upper Globigerina | Layer C: Middle Globigerina | |
---|---|---|---|
Density | 1750 kg/m3 | 2150 kg/m3 | 2300 kg/m3 |
Young modulus | 50 Mpa | 3784.5 Mpa | 19,350 Mpa |
Poisson’s ratio | 0.4 | 0.3 | 0.2 |
Shear modulus | 277 Mpa | 144.7 Mpa | 8062.5 Mpa |
Compressive ultimate strength | 10 Mpa | 13.8 Mpa | 16.71 Mpa |
Tensile ultimate strength | 5 Mpa | 5 MPa | 5 MPa |
Weakened Material Properties (Layer A) 1 | |
---|---|
Density | 1750 kg/m3 |
Young modulus | 15 Mpa |
Poisson’s ratio | 0.3 |
Shear modulus | 277 Mpa |
Compressive ultimate strength | 10 Mpa |
Tensile ultimate strength | 5 Mpa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volanis, G.; Galanakis, D.; Bolanakis, N.; Maravelakis, E.; Borg, R.P.; Stavroulakis, G.E. Modelling and Stability Assessment of the Rock Cliffs and Xrobb l-Ġħaġin Neolithic Structure in Malta. Heritage 2024, 7, 2944-2958. https://doi.org/10.3390/heritage7060138
Volanis G, Galanakis D, Bolanakis N, Maravelakis E, Borg RP, Stavroulakis GE. Modelling and Stability Assessment of the Rock Cliffs and Xrobb l-Ġħaġin Neolithic Structure in Malta. Heritage. 2024; 7(6):2944-2958. https://doi.org/10.3390/heritage7060138
Chicago/Turabian StyleVolanis, George, Demitrios Galanakis, Nikolaos Bolanakis, Emmanuel Maravelakis, Ruben Paul Borg, and Georgios E. Stavroulakis. 2024. "Modelling and Stability Assessment of the Rock Cliffs and Xrobb l-Ġħaġin Neolithic Structure in Malta" Heritage 7, no. 6: 2944-2958. https://doi.org/10.3390/heritage7060138
APA StyleVolanis, G., Galanakis, D., Bolanakis, N., Maravelakis, E., Borg, R. P., & Stavroulakis, G. E. (2024). Modelling and Stability Assessment of the Rock Cliffs and Xrobb l-Ġħaġin Neolithic Structure in Malta. Heritage, 7(6), 2944-2958. https://doi.org/10.3390/heritage7060138