Electrochemical Detection of Dinitrobenzene on Silicon Electrodes: Toward Explosives Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of 1,4-Dinitrobenzene Solution
2.3. Electrode Preparation
2.4. Electrochemical Measurements
2.5. Atomic Force Microscopy Imaging
3. Results and Discussion
3.1. Surface Characterization
3.2. Electrochemical Detection of DNB on GCE
3.3. Electrochemical Detection of DNB on Si–H
3.4. Electrochemical Impedance Spectroscopy (EIS)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giannoukos, S.; Brkić, B.; Taylor, S.; Marshall, A.; Verbeck, G.F. Chemical Sniffing Instrumentation for Security Applications. Chem. Rev. 2016, 116, 8146–8172. [Google Scholar] [CrossRef] [PubMed]
- Takáts, Z.; Cotte-Rodriguez, I.; Talaty, N.; Chen, H.; Cooks, R.G. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chem. Commun. 2005, 15, 1950–1952. [Google Scholar] [CrossRef]
- Marder, D.; Tzanani, N.; Prihed, H.; Gura, S. Trace detection of explosives with a unique large volume injection gas chromatography-mass spectrometry (LVI-GC-MS) method. Anal. Methods 2018, 10, 2712–2721. [Google Scholar] [CrossRef]
- Marple, R.L.; LaCourse, W.R. A platform for on-site environmental analysis of explosives using high performance liquid chromatography with UV absorbance and photo-assisted electrochemical detection. Talanta 2005, 66, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Dheepika, R.; Parvathy, P.A.; Imran, P.M.; Bhuvanesh NS, P.; Nagarajan, S. Fluorescence quenching based detection of nitroaromatics using luminescent triphenylamine carboxylic acids. Sci. Rep. 2021, 11, 19324. [Google Scholar] [CrossRef] [PubMed]
- Shanmugaraju, S.; Joshi, S.A.; Mukherjee, P.S. Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. J. Mater. Chem. 2011, 21, 9130–9138. [Google Scholar] [CrossRef]
- Dutta, P.; Chakravarty, S.; Sarma, N.S. Detection of nitroaromatic explosives using π-electron rich luminescent polymeric nanocomposites. RSC Adv. 2016, 6, 3680–3689. [Google Scholar] [CrossRef]
- Sohn, H.; Sailor, M.J.; Magde, D.; Trogler, W.C. Detection of Nitroaromatic Explosives Based on Photoluminescent Polymers Containing Metalloles. J. Am. Chem. Soc. 2003, 125, 3821–3830. [Google Scholar] [CrossRef]
- O’Mahony, A.M.; Wang, J. Nanomaterial-based electrochemical detection of explosives: A review of recent developments. Anal. Methods 2013, 5, 4296–4309. [Google Scholar] [CrossRef]
- Yew, Y.T.; Ambrosi, A.; Pumera, M. Nitroaromatic explosives detection using electrochemically exfoliated graphene. Sci. Rep. 2016, 6, 33276. [Google Scholar] [CrossRef]
- Leppert, J.; Härtel, M.A.C.; Klapötke, T.M.; Boeker, P. Hyperfast flow-field thermal gradient GC/MS of explosives with reduced elution temperatures. Anal. Chem. 2018, 90, 8404–8411. [Google Scholar] [CrossRef] [PubMed]
- Milligan, K.; Shand, N.C.; Graham, D.; Faulds, K. Detection of Multiple Nitroaromatic Explosives via Formation of a Janowsky Complex and SERS. Anal. Chem. 2020, 92, 3253–3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Chen, H.; Li, S.; Wang, G.; Wei, F.; Guo, X.; Tu, H. Active Self-Assembled Monolayer Sensors for Trace Explosive Detection. Langmuir 2020, 36, 1462–1466. [Google Scholar] [CrossRef] [PubMed]
- Bakker, E.; Qin, Y. Electrochemical Sensors. Anal. Chem. 2006, 78, 3965–3984. [Google Scholar] [CrossRef] [Green Version]
- Bard, A.J. Encyclopedia of electrochemistry of the elements. J. Electrochem. Soc. 1974, 121, 212C. [Google Scholar] [CrossRef]
- Kokkinidis, G.; Kelaidopoulou, A. Electrochemical behaviour of nitroindoles: Oxidative electropolymerization and reduction of the nitro group of polymerized and non-polymerized 4-nitro and 5-nitroindole. J. Electroanal. Chem. 1996, 414, 197–208. [Google Scholar]
- Zhou, Z.; Mukherjee, S.; Hou, S.; Li, W.; Elsner, M.; Fischer, R.A. Porphyrinic MOF Film for Multifaceted Electrochemical Sensing. Angew. Chem. Int. Ed. 2021, 60, 20551–20557. [Google Scholar] [CrossRef]
- Koh, A.; Lu, Y.; Schoenfisch, M.H. Fabrication of Nitric Oxide-Releasing Porous Polyurethane Membranes-Coated Needle-type Implantable Glucose Biosensors. Anal. Chem. 2013, 85, 10488–10494. [Google Scholar] [CrossRef] [Green Version]
- Chua, C.K.; Pumera, M.; Rulíšek, L. Reduction pathways of 2, 4, 6-trinitrotoluene: An electrochemical and theoretical study. J. Phys. Chem. C 2012, 116, 4243–4251. [Google Scholar] [CrossRef]
- Chua, C.K.; Pumera, M. Influence of Methyl Substituent Position on Redox Properties of Nitroaromatics Related to 2, 4, 6-Trinitrotoluene. Electroanalysis 2011, 23, 2350–2356. [Google Scholar] [CrossRef]
- Holly, A.Y.; DeTata, D.A.; Lewis, S.W.; Silvester, D.S. Recent developments in the electrochemical detection of explosives: Towards field-deployable devices for forensic science. TrAC Trends Anal. Chem. 2017, 97, 374–384. [Google Scholar]
- Ahmad, K.; Mohammad, A.; Ansari, S.N.; Mobin, S.M. Construction of graphene oxide sheets based modified glassy carbon electrode (GO/GCE) for the highly sensitive detection of nitrobenzene. Mater. Res. Express 2018, 5, 075601. [Google Scholar] [CrossRef]
- Wang, J.; Hocevar, S.B.; Ogorevc, B. Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2,4,6-trinitrotoluene. Electrochem. Commun. 2004, 6, 176–179. [Google Scholar] [CrossRef]
- Lima, A.P.; Almeida, P.L.; Sousa, R.M.; Richter, E.M.; Nossol, E.; Munoz, R.A. Effect of alumina supported on glassy-carbon electrode on the electrochemical reduction of 2,4,6-trinitrotoluene: A simple strategy for its selective detection. J. Electroanal. Chem. 2019, 851, 113385. [Google Scholar] [CrossRef]
- Arman, A.; Sağlam, Ş.; Üzer, A.; Apak, R. Electrochemical determination of nitroaromatic explosives using glassy carbon/multi walled carbon nanotube/polyethyleneimine electrode coated with gold nanoparticles. Talanta 2022, 238, 122990. [Google Scholar] [CrossRef]
- Gonzalez, C.M.; Iqbal, M.; Dasog, M.; Piercey, D.G.; Lockwood, R.; Klapötke, T.M.; Veinot, J.G.C. Detection of high-energy compounds using photoluminescent silicon nanocrystal paper based sensors. Nanoscale 2014, 6, 2608–2612. [Google Scholar] [CrossRef] [Green Version]
- Tudisco, C.; Motta, A.; Barboza, T.; Massera, C.; Giuffrida, A.E.; Pinalli, R.; Dalcanale, E.; Condorelli, G.G. Cavitand-Decorated Silicon Columnar Nanostructures for the Surface Recognition of Volatile Nitroaromatic Compounds. ACS Omega 2018, 3, 9172–9181. [Google Scholar] [CrossRef]
- Peiris, C.R.; Ciampi, S.; Dief, E.M.; Zhang, J.; Canfield, P.J.; Le Brun, A.P.; Kosov, D.S.; Reimers, J.R.; Darwish, N. Spontaneous S–Si bonding of alkanethiols to Si(111)–H: Towards Si–molecule–Si circuits. Chem. Sci. 2020, 11, 5246–5256. [Google Scholar] [CrossRef]
- Dief, E.M.; Darwish, N. Ultrasonic Generation of Thiyl Radicals: A General Method of Rapidly Connecting Molecules to a Range of Electrodes for Electrochemical and Molecular Electronics Applications. ACS Sens. 2020, 6, 573–580. [Google Scholar] [CrossRef]
- Dief, E.M.; Vogel, Y.B.; Peiris, C.R.; Le Brun, A.P.; Gonçales, V.R.; Ciampi, S.; Reimers, J.R.; Darwish, N. Covalent Linkages of Molecules and Proteins to Si–H Surfaces Formed by Disulfide Reduction. Langmuir 2020, 36, 14999–15009. [Google Scholar] [CrossRef]
- Peiris, C.R.; Vogel, Y.B.; Le Brun, A.P.; Aragonès, A.C.; Coote, M.L.; Díez-Pérez, I.; Ciampi, S.; Darwish, N. Metal–Single-Molecule–Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes. J. Am. Chem. Soc. 2019, 141, 14788–14797. [Google Scholar] [CrossRef] [PubMed]
- Dief, E.; Brun, A.; Ciampi, S.; Darwish, N. Spontaneous Grafting of OH-Terminated Molecules on Si−H Surfaces via Si–O–C Covalent Bonding. Surfaces 2021, 4, 81–88. [Google Scholar] [CrossRef]
- Rahpeima, S.; Dief, E.M.; Peiris, C.R.; Ferrie, S.; Duan, A.; Ciampi, S.; Raston, C.L.; Darwish, N. Reduced graphene oxide–silicon interface involving direct Si–O bonding as a conductive and mechanical stable ohmic contact. Chem. Commun. 2020, 56, 6209–6212. [Google Scholar] [CrossRef] [PubMed]
- Rahpeima, S.; Dief, E.M.; Ciampi, S.; Raston, C.L.; Darwish, N. Impermeable Graphene Oxide Protects Silicon from Oxidation. ACS Appl. Mater. Interfaces 2021, 13, 38799–38807. [Google Scholar] [CrossRef]
- Silvester, D.S.; Wain, A.J.; Aldous, L.; Hardacre, C.; Compton, R.G. Electrochemical reduction of nitrobenzene and 4-nitrophenol in the room temperature ionic liquid [C4dmim][N(Tf)2]. J. Electroanal. Chem. 2006, 596, 131–140. [Google Scholar] [CrossRef]
- Huang, Y.; Lessard, J. Electrochemical Behaviour of Nitrobenzene, Nitrosobenzene, Azobenzene, and Azoxybenzene on Hg, Pt, Cu, and Ni Electrodes in Aprotic Medium. Electroanalysis 2016, 28, 2716–2727. [Google Scholar] [CrossRef]
- Li, H.; Huang, C.; Li, Y.; Yang, W.; Liu, F. Electrocatalytic reduction of trace nitrobenzene using a graphene-oxide@polymerized-manganese-porphyrin composite. RSC Adv. 2019, 9, 22523–22530. [Google Scholar] [CrossRef] [Green Version]
- Mendkovich, A.S.; Syroeshkin, M.A.; Mikhalchenko, L.V.; Mikhailov, M.N.; Rusakov, A.I.; Gul’tyai, V.P. Integrated Study of the Dinitrobenzene Electroreduction Mechanism by Electroanalytical and Computational Methods. Int. J. Electrochem. 2011, 2011, 346043. [Google Scholar] [CrossRef] [Green Version]
- Arshad, N.; Janjua, N.K.; Khan, A.Y.; Yaqub, A.; Burkholz, T.; Jacob, C. Natural flavonoids interact with dinitrobenzene system in aprotic media: An electrochemical probing. Nat. Prod. Commun. 2012, 7, 311–315. [Google Scholar] [CrossRef]
- Chan-Leonor, C.; Martin, S.L.; Smith, D.K. Electrochemically Controlled Hydrogen Bonding. Redox-Dependent Formation of a 2:1 Diarylurea/Dinitrobenzene2-Complex. J. Org. Chem. 2005, 70, 10817–10822. [Google Scholar] [CrossRef]
- Brosel-Oliu, S.; Uria, N.; Abramova, N.; Bratov, A. Impedimetric sensors for bacteria detection. Biosens. Micro Nanoscale Appl. 2015, 9, 257–288. [Google Scholar]
- Shuang, S.; Girardi, L.; Rizzi, G.A.; Sartorel, A.; Marega, C.; Zhang, Z.; Granozzi, G. Visible Light Driven Photoanodes for Water Oxidation Based on Novel r-GO/β-Cu₂V₂O₇/TiO₂ Nanorods Composites. Nanomaterials 2018, 8, 544. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dief, E.M.; Hoffmann, N.; Darwish, N. Electrochemical Detection of Dinitrobenzene on Silicon Electrodes: Toward Explosives Sensors. Surfaces 2022, 5, 218-227. https://doi.org/10.3390/surfaces5010015
Dief EM, Hoffmann N, Darwish N. Electrochemical Detection of Dinitrobenzene on Silicon Electrodes: Toward Explosives Sensors. Surfaces. 2022; 5(1):218-227. https://doi.org/10.3390/surfaces5010015
Chicago/Turabian StyleDief, Essam M., Natasha Hoffmann, and Nadim Darwish. 2022. "Electrochemical Detection of Dinitrobenzene on Silicon Electrodes: Toward Explosives Sensors" Surfaces 5, no. 1: 218-227. https://doi.org/10.3390/surfaces5010015
APA StyleDief, E. M., Hoffmann, N., & Darwish, N. (2022). Electrochemical Detection of Dinitrobenzene on Silicon Electrodes: Toward Explosives Sensors. Surfaces, 5(1), 218-227. https://doi.org/10.3390/surfaces5010015