Temperature Effects in the Initial Stages of Heteroepitaxial Film Growth
Abstract
:1. Introduction
2. Model and Methods
2.1. Deposition Model
2.2. Model Justification and Dimensionless Parameters
2.3. Basic Quantities
2.4. Simulation Parameters
- (a)
- ;
- (b)
- , .
3. Results
3.1. Growth with Negligible ES Barrier
3.2. Growth with ES Barriers
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ES | Ehrlich-Schwöebel |
NN | Nearest neighbor |
References
- Ohring, M. Materials Science of Thin Films—Deposition and Structure, 2nd ed.; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Michely, T.; Krug, J. Islands, Mounds, and Atoms; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Pimpinelli, A.; Villain, J. Physics of Crystal Growth; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Ratsch, C.; Venables, J.A. Nucleation theory and the early stages of thin film growth. J. Vacuum Sci. Technol. A 2003, 21, S96–S109. [Google Scholar] [CrossRef]
- Evans, J.W.; Thiel, P.A.; Bartelt, M.C. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surf. Sci. Rep. 2006, 61, 1–128. [Google Scholar] [CrossRef]
- Barabási, A.; Stanley, H.E. Fractal Concepts in Surface Growth; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Krug, J. Origins of scale invariance in growth processes. Adv. Phys. 1997, 46, 139–282. [Google Scholar] [CrossRef]
- Schwöebel, R.L. Step motion on crystal surfaces II. J. Appl. Phys. 1969, 40, 614. [Google Scholar] [CrossRef]
- Kotrla, M.; Smilauer, P. Nonuniversality in models of epitaxial growth. Phys. Rev. B 1996, 53, 13777–13792. [Google Scholar] [CrossRef]
- Meng, B.; Weinberg, W.H. Dynamic Monte Carlo study of molecular beam epitaxial growth models: Interfacial scaling and morphology. Surf. Sci. 1996, 364, 151–163. [Google Scholar] [CrossRef]
- de Assis, T.A.; Aarão Reis, F.D.A. Dynamic scaling and temperature effects in thin film roughening. J. Stat. Mech. Theory Exp. 2015, 2015, P06023. [Google Scholar] [CrossRef] [Green Version]
- Martynec, T.; Klapp, S.H.L. Modeling of nonequilibrium surface growth by a limited-mobility model with distributed diffusion length. Phys. Rev. E 2019, 100, 033307. [Google Scholar] [CrossRef] [Green Version]
- Elliot, W.C.; Miceli, P.F.; Tse, T.; Stephens, P.W. Temperature and orientation dependence of kinetic roughening during homoepitaxy: A quantitative X-ray-scattering study of Ag. Phys. Rev. B 1996, 54, 17938–17942. [Google Scholar] [CrossRef] [Green Version]
- Stoldt, C.R.; Caspersen, K.J.; Bartelt, M.C.; Jenks, C.J.; Evans, J.W.; Thiel, P.A. Using Temperature to Tune Film Roughness: Nonintuitive Behavior in a Simple System. Phys. Rev. Lett. 2000, 85, 800–803. [Google Scholar] [CrossRef] [Green Version]
- Costantini, G.; de Mongeot, F.B.; Boragno, C.; Valbusa, U. Temperature dependent reentrant smooth growth in Ag(001) homoepitaxy. Surf. Sci. 2000, 459, L487–L492. [Google Scholar] [CrossRef]
- Botez, C.E.; Miceli, P.F.; Stephens, P.W. Temperature dependence of surface roughening during homoepitaxial growth on Cu(001). Phys. Rev. B 2001, 64, 125427. [Google Scholar] [CrossRef] [Green Version]
- Caspersen, K.J.; Layson, A.R.; Stoldt, C.R.; Fournee, V.; Thiel, P.A.; Evans, J.W. Development and ordering of mounds during metal(100) homoepitaxy. Phys. Rev. B 2002, 65, 193407. [Google Scholar] [CrossRef] [Green Version]
- Leal, F.F.; Ferreira, S.C.; Ferreira, S.O. Modelling of epitaxial film growth with an Ehrlich-Schwöebel barrier dependent on the step height. J. Phys. Condens. Matter 2011, 23, 292201. [Google Scholar] [CrossRef] [Green Version]
- Leal, F.F.; Oliveira, T.J.; Ferreira, S.C. Kinetic modelling of epitaxial film growth with up- and downward step barriers. J. Stat. Mech. Theory Exp. 2011, 2011, P09018. [Google Scholar] [CrossRef] [Green Version]
- Gedda, M.; Subbarao, N.V.V.; Goswami, D.K. Local Diffusion Induced Roughening in Cobalt Phthalocyanine Thin Film Growth. Langmuir 2014, 30, 8735–8740. [Google Scholar] [CrossRef]
- Parveen, S.; Obaidulla, S.M.; Giri, P. Growth kinetics of hybrid perovskite thin films on different substrates at elevated temperature and its direct correlation with the microstructure and optical properties. Appl. Surf. Sci. 2020, 530, 147224. [Google Scholar] [CrossRef]
- Almeida, R.A.L.; Ferreira, S.O.; Ribeiro, I.R.B.; Oliveira, T.J. Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth. Europhys. Lett. 2015, 109, 46003. [Google Scholar] [CrossRef] [Green Version]
- Warrender, J.M.; Aziz, M.J. Effect of deposition rate on morphology evolution of metal-on-insulator films grown by pulsed laser deposition. Phys. Rev. B 2007, 76, 045414. [Google Scholar] [CrossRef] [Green Version]
- Elofsson, V.; Lü, B.; Magnfält, D.; Münger, E.P.; Sarakinos, K. Unravelling the physical mechanisms that determine microstructural evolution of ultrathin Volmer-Weber films. J. Appl. Phys. 2014, 116, 044302. [Google Scholar] [CrossRef] [Green Version]
- Appy, D.; Lei, H.; Wang, C.Z.; Tringides, M.C.; Liu, D.J.; Evans, J.W.; Thiel, P.A. Transition metals on the (0001) surface of graphite: Fundamental aspects of adsorption, diffusion, and morphology. Prog. Surf. Sci. 2014, 89, 219–238. [Google Scholar] [CrossRef] [Green Version]
- Lü, B.; Almyras, G.A.; Gervilla, V.; Greene, J.E.; Sarakinos, K. Formation and morphological evolution of self-similar 3D nanostructures on weakly interacting substrates. Phys. Rev. Mater. 2018, 2, 063401. [Google Scholar] [CrossRef] [Green Version]
- Gervilla, V.; Almyras, G.A.; Thunström, F.; Greene, J.E.; Sarakinos, K. Dynamics of 3D-island growth on weakly-interacting substrates. Appl. Surf. Sci. 2019, 488, 383–390. [Google Scholar] [CrossRef]
- Gervilla, V.; Almyras, G.A.; Lu, B.; Sarakinos, K. Coalescence dynamics of 3D islands on weakly-interacting substrates. Sci. Rep. 2020, 10, 2031. [Google Scholar] [CrossRef] [Green Version]
- Empting, E.; Klopotek, M.; Hinderhofer, A.; Schreiber, F.; Oettel, M. Lattice gas study of thin-film growth scenarios and transitions between them: Role of substrate. Phys. Rev. E 2021, 103, 023302. [Google Scholar] [CrossRef]
- To, T.B.T.; Almeida, R.; Ferreira, S.O.; Aarão Reis, F.D.A. Roughness and correlations in the transition from island to film growth: Simulations and application to CdTe deposition. Appl. Surf. Sci. 2021, 560, 149946. [Google Scholar] [CrossRef]
- Bommel, S.; Kleppmann, N.; Weber, C.; Spranger, H.; Schäfer, P.; Novak, J.; Roth, S.V.; Schreiber, F.; Klapp, S.H.L.; Kowarik, S. Unravelling the multilayer growth of the fullerene C60 in real time. Nat. Commun. 2014, 5, 5388. [Google Scholar] [CrossRef] [Green Version]
- Kleppmann, N.; Klapp, S.H.L. Particle-resolved dynamics during multilayer growth of C60. Phys. Rev. B 2015, 91, 045436. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, T.; Sun, M.; Zhao, D.; Wei, Q.; Sun, Y.; Wang, R.; Jin, F.; Niu, Q.; Su, Z. Scaling behavior and morphology evolution of CH3NH3PbI3 perovskite thin films grown by thermal evaporation. Mater. Res. Express 2017, 4, 075510. [Google Scholar] [CrossRef]
- Yang, J.J.; Tang, J.; Liu, N.; Ma, F.; Tang, W.; Xu, K.W. Unstable kinetic roughening during the island coalescence stage of sputtered tantalum films. J. Appl. Phys. 2012, 111, 104303. [Google Scholar] [CrossRef]
- Lü, B.; Souqui, L.; Elofsson, V.; Sarakinos, K. Scaling of elongation transition thickness during thin-film growth on weakly-interacting substrates. Appl. Phys. Lett. 2017, 111, 084101. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, G.; Lu, T. Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- To, T.B.T.; Aarão Reis, F.D.A. Domain formation in the deposition of thin films of two-component mixtures. J. Alloys Compd. 2020, 835, 155093. [Google Scholar] [CrossRef] [Green Version]
- Aarão Reis, F.D.A. Dynamic scaling in thin-film growth with irreversible step-edge attachment. Phys. Rev. E 2010, 81, 041605. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, J.; Jacobsen, K.W.; Stoltze, P.; Norskov, J.K. Island Shape-Induced Transition from 2D to 3D Growth for Pt/Pt(111). Phys. Rev. Lett. 1995, 74, 2295–2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartelt, M.C.; Evans, J.W. Temperature dependence of kinetic roughening during metal(100) homoepitaxy: Transition between ‘mounding’ and smooth growth. Surf. Sci. 1999, 423, 189–207. [Google Scholar] [CrossRef]
- Amar, J.G.; Family, F. Effects of crystalline microstructure on epitaxial growth. Phys. Rev. Lett. 1996, 54, 14742–14745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratsch, C.; Smilauer, P.; Zangwill, A.; Vedensky, D.D. Submonolayer epitaxy without a critical nucleus. Surf. Sci. Lett. 1995, 329, L599–L604. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T.J.; Aarão Reis, F.D.A. Scaling in reversible submonolayer deposition. Phys. Rev. B 2013, 87, 235430. [Google Scholar] [CrossRef] [Green Version]
- Kairaitis, G.; Galdikas, A. Modelling of Phase Structure and Surface Morphology Evolution during Compound Thin Film Deposition. Coatings 2020, 10, 1077. [Google Scholar] [CrossRef]
- de Assis, T.A.; Aarão Reis, F.D.A. Thin film deposition with time-varying temperature. J. Stat. Mech. Theory Exp. 2013, 2013, P10008. [Google Scholar] [CrossRef] [Green Version]
Set | (K) | (eV) | (eV) | (eV) | (eV) | |
---|---|---|---|---|---|---|
A → A1 | 0 | |||||
B → B1 | 0 | |||||
C → C1 | ||||||
C → C2 | ||||||
C → C3 | ||||||
D → D1 | ||||||
D → D2 | ||||||
D → D3 | ||||||
E → E1 | ||||||
E → E2 | ||||||
E → E3 |
Set | P | |||
---|---|---|---|---|
A | 1 | |||
A1 | 1 | |||
B | 1 | |||
B1 | 1 | |||
C | ||||
C1 | ||||
C2 | ||||
C3 | ||||
C | ||||
D | ||||
D1 | ||||
D2 | ||||
D3 | ||||
E | ||||
E1 | ||||
E2 | ||||
E3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
To, T.B.T.; Aarão Reis, F.D.A. Temperature Effects in the Initial Stages of Heteroepitaxial Film Growth. Surfaces 2022, 5, 251-264. https://doi.org/10.3390/surfaces5020018
To TBT, Aarão Reis FDA. Temperature Effects in the Initial Stages of Heteroepitaxial Film Growth. Surfaces. 2022; 5(2):251-264. https://doi.org/10.3390/surfaces5020018
Chicago/Turabian StyleTo, Tung B. T., and Fábio D. A. Aarão Reis. 2022. "Temperature Effects in the Initial Stages of Heteroepitaxial Film Growth" Surfaces 5, no. 2: 251-264. https://doi.org/10.3390/surfaces5020018
APA StyleTo, T. B. T., & Aarão Reis, F. D. A. (2022). Temperature Effects in the Initial Stages of Heteroepitaxial Film Growth. Surfaces, 5(2), 251-264. https://doi.org/10.3390/surfaces5020018