Density Functional Theory Calculations of the Effect of Oxygenated Functionals on Activated Carbon towards Cresol Adsorption
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Cresol Adsorption on Activated Carbon
3.2. Theoretical Calculations
3.2.1. Cresol Adsorption on Pristine Activated Carbon
3.2.2. Cresol Adsorption on –COOH Functionalized Activated Carbon
3.2.3. Cresol Adsorption on –CHO Functionalized Activated Carbon
3.2.4. Cresol Adsorption on –OH Functionalized Activated Carbon
3.3. Relative Adsorption Energies
4. Discussion
5. Conclusions
- The DFT studies provided a new understanding of the interaction of p-cresol with pristine and functionalized activated carbon.
- The adsorption of cresol on pristine, hydroxyl functionalized activated carbon, carbonyl functionalized activated carbon, and carboxyl functionalized activated carbon were found to be favorable, and their adsorption energies corresponded to −416.47 kJ/mol, −54.73 kJ/mol, −49.99 kJ/mol, and −63.62 kJ/mol, respectively.
- The high adsorption energies suggested the chemisorptive type of interaction between cresol and activated carbon.
- The pristine activated carbon showed stronger adsorption towards cresol as compared to functionalized activated carbon, while among the oxygen functionals, the activated carbon-containing carboxyl interacted more favorably with the cresol compared to the hydroxyl and carbonyl group, attributed to the formation of two types of hydrogen bonds between the carboxyl activated carbon and the cresol simultaneously.
- The study indicates that the introduction of carboxyl functionals on the surface of activated carbon would favor cresol adsorption.
- The outcome of these theoretical findings could provide valuable guidance for the development and production of activated carbon with optimum efficiency for cresol adsorption.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Future Plans
References
- Bansal, R.C.; Goyal, M. Activated Carbon Adsorption; Taylor & Francis Ltd.: Oxfordshire, UK, 2005; pp. 1–472. ISBN 9781420028812. [Google Scholar]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: A review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Golea, D.M.; Jarvis, P.; Jefferson, B.; Moore, G.; Sutherland, S.; Parsons, S.A.; Judd, S.J. Influence of granular activated carbon media properties on natural organic matter and disinfection by-product precursor removal from drinking water. Water Res. 2020, 174, 115613. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Gupta, H. Activated carbon from sawdust for naphthalene removal from contaminated water. Environ. Technol. Innov. 2020, 20, 101080. [Google Scholar] [CrossRef]
- Mustafa, R.; Asmatulu, E. Preparation of activated carbon using fruit, paper and clothing wastes for wastewater treatment. J. Water Process Eng. 2020, 35, 101239. [Google Scholar] [CrossRef]
- Shahrokhi-Shahraki, R.; Benally, C.; El-Din, M.G.; Park, J. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 2021, 264, 128455. [Google Scholar] [CrossRef] [PubMed]
- Tu, B.; Wen, R.; Wang, K.; Cheng, Y.; Deng, Y.; Cao, W.; Zhang, K.; Tao, H. Efficient removal of aqueous hexavalent chromium by activated carbon derived from Bermuda grass. J. Colloid Interface Sci. 2020, 560, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Shang, C. Removal of micropollutants in drinking water using UV-LED/chlorine advanced oxidation process followed by activated carbon adsorption. Water Res. 2020, 185, 116297. [Google Scholar] [CrossRef]
- Hadjar, H.; Hamdi, B.; Ania, C.O. Adsorption of p-cresol on novel diatomite/carbon composites. J. Hazard. Mater. 2011, 188, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Edalli, V.A.; Mulla, S.I.; Eqani, S.A.M.A.S.; Mahadevan, G.D.; Sharma, R.; Shouche, Y.; Kamanavalli, C.M. Evaluation of p-cresol degradation with polyphenol oxidase (PPO) immobilized in various matrices. 3 Biotech 2016, 6, 229. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.H.; Gu, Y.J. Biodegradation kinetic studies of phenol and p-cresol in a batch and continuous stirred-tank bioreactor with pseudomonas putida atcc 17484 cells. Processes 2021, 9, 133. [Google Scholar] [CrossRef]
- Supandi, A.R.; Nunotani, N.; Imanaka, N. Effective p-cresol removal through catalytic liquid-phase oxidation under moderate conditions using Pt/CeO2-ZrO2-SnO2/SBA-16 as a catalyst. J. Asian Ceram. Soc. 2020, 8, 116–122. [Google Scholar] [CrossRef] [Green Version]
- William, W.; Anku, M.A.M.; William, W.; Anku, M.A.M.; Govender, P.P. Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods; Intechopen Ltd.: London, UK, 2016; Volume 1, Chapter 17; p. 13. [Google Scholar]
- Nouri, S.; Haghseresht, F.; Max Lu, G.O. Comparison of adsorption capacity of p-cresol & p-nitrophenol by activated carbon in single and double solute. Adsorption 2002, 8, 215–223. [Google Scholar]
- Yahya, M.A.; Mansor, M.H.; Zolkarnaini, W.A.A.W.; Rusli, N.S.; Aminuddin, A.; Mohamad, K.; Sabhan, F.A.M.; Atik, A.A.A.; Ozair, L.N. A brief review on activated carbon derived from agriculture by-product. AIP Conf. Proc. 2018, 1972, 030023. [Google Scholar]
- Abdul Khalil, H.P.S.; Jawaid, M.; Firoozian, P.; Rashid, U.; Islam, A.; Akil, H.M. Activated carbon from various agricultural wastes by chemical activation with KOH: Preparation and characterization. J. Biobased Mater. Bioenergy 2013, 7, 708–714. [Google Scholar] [CrossRef]
- Bedin, K.C.; Martins, A.C.; Cazetta, A.L.; Pezoti, O.; Almeida, V.C. KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chem. Eng. J. 2016, 286, 476–484. [Google Scholar] [CrossRef]
- Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon; Elsevier: Burlington, MA, USA, 2006; ISBN 9780080444635. [Google Scholar]
- Mart, M.L.; Torres, M.M.; Guzm, C.A.; Maestri, D.M. Preparation and characteristics of activated carbon from olive stones and walnut shells. Ind. Crops Prod. 2006, 23, 23–28. [Google Scholar]
- Kwiatkowski, J.F. Activated Carbon: Classifications, Properties and Applications; Nova Science Publishers: New York, NY, USA, 2011; ISBN 9781612096841. [Google Scholar]
- Radovic, L.R. Chemistry and Physics of Carbon; Taylor & Francis Ltd.: Oxfordshire, UK, 2007; Volume 30, pp. 1–245. ISBN 9781420042993. [Google Scholar]
- Dilokekunakul, W.; Teerachawanwong, P.; Klomkliang, N.; Supasitmongkol, S.; Chaemchuen, S. Effects of nitrogen and oxygen functional groups and pore width of activated carbon on carbon dioxide capture: Temperature dependence. Chem. Eng. J. 2020, 389, 124413. [Google Scholar] [CrossRef]
- Liang, X.; Chi, J.; Yang, Z. The influence of the functional group on activated carbon for acetone adsorption property by molecular simulation study. Microporous Mesoporous Mater. 2018, 262, 77–88. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, P.; Qiu, Y.; Yu, Q.; Ma, J.; Wu, H.; Luo, G.; Xu, M.; Yao, H. Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. Chem. Eng. J. 2015, 263, 1–8. [Google Scholar] [CrossRef]
- Bakas, I.; Elatmani, K.; Qourzal, S.; Barka, N.; Assabbane, A.; Aît-Ichou, I. A comparative adsorption for the removal of p-cresol from aqueous solution onto granular activated charcoal and granular activated alumina. J. Mater. Environ. Sci. 2014, 5, 675–682. [Google Scholar]
- Neagu, M.; Vîjan, L. Studies on O- and P-cresol adsorption on activated carbon. Environ. Eng. Manag. J. 2011, 10, 181–186. [Google Scholar] [CrossRef]
- Quintelas, C.; Sousa, E.; Silva, F.; Neto, S.; Tavares, T. Competitive biosorption of ortho-cresol, phenol, chlorophenol and chromium(VI) from aqueous solution by a bacterial biofilm supported on granular activated carbon. Process Biochem. 2006, 41, 2087–2091. [Google Scholar] [CrossRef] [Green Version]
- Qu, W.; Shen, F.; Zu, H.; Liu, S.; Yang, J.; Hu, Y.; Yang, Z.; Li, H. Density Functional Theory Studies of the Adsorption and Interactions between Selenium Species and Mercury on Activated Carbon. Energy Fuels 2020, 34, 9779–9786. [Google Scholar] [CrossRef]
- Cam, L.M.; Van Khu, L.; Ha, N.N. Theoretical study on the adsorption of phenol on activated carbon using density functional theory. J. Mol. Model. 2013, 19, 4395–4402. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.-Y.; Ng, M.-F.; Goh, B.-M.; Saunders, M.; Hill, N.; Jiang, Z.-T.; Balach, J.; El-Harbawig, M. Probing the interactions of phenol with oxygenated functional groups on curved fullerene-like sheets in activated carbon. Phys. Chem. Chem. Phys. 2016, 18, 456–497. [Google Scholar] [CrossRef] [Green Version]
- Efremenko, I.; Sheintuch, M. Predicting solute adsorption on activated carbon: Phenol. Langmuir 2006, 22, 3614–3621. [Google Scholar] [CrossRef]
- Liu, X.; Han, Y.; Cheng, Y.; Xu, G. Microwave-assisted ammonia modification of activated carbon for effective removal of phenol from wastewater: DFT and experiment study. Appl. Surf. Sci. 2020, 518, 146258. [Google Scholar] [CrossRef]
- Ghahghaey, Z.; Hekmati, M.; Darvish Ganji, M. Theoretical investigation of phenol adsorption on functionalized graphene using DFT calculations for effective removal of organic contaminants from wastewater. J. Mol. Liq. 2021, 324, 114777. [Google Scholar] [CrossRef]
- Supong, A.; Bhomick, P.C.; Baruah, M.; Pongener, C.; Sinha, U.B.; Sinha, D. Adsorptive removal of Bisphenol A by biomass activated carbon and insights into the adsorption mechanism through density functional theory calculations. Sustain. Chem. Pharm. 2019, 13, 100159. [Google Scholar] [CrossRef]
- Supong, A.; Bhomick, P.C.; Karmaker, R.; Ezung, S.L.; Jamir, L.; Sinha, U.B.; Sinha, D. Experimental and theoretical insight into the adsorption of phenol and 2,4-dinitrophenol onto Tithonia diversifolia activated carbon. Appl. Surf. Sci. 2020, 529, 147046. [Google Scholar] [CrossRef]
- Supong, A.; Bhomick, P.C.; Sinha, U.B.; Sinha, D. A combined experimental and theoretical investigation of the adsorption of 4-Nitrophenol on activated biocarbon using DFT method. Korean J. Chem. Eng. 2019, 36, 2023–2034. [Google Scholar] [CrossRef]
- Achour, Y.; Bahsis, L.; Ablouh, E.H.; Yazid, H.; Laamari, M.R.; Haddad, M. El Insight into adsorption mechanism of Congo red dye onto Bombax Buonopozense bark Activated-carbon using Central composite design and DFT studies. Surf. Interfaces 2021, 23, 100977. [Google Scholar] [CrossRef]
- Spaltro, A.; Pila, M.N.; Colasurdo, D.D.; Noseda Grau, E.; Román, G.; Simonetti, S.; Ruiz, D.L. Removal of paracetamol from aqueous solution by activated carbon and silica. Experimental and computational study. J. Contam. Hydrol. 2021, 236, 103739. [Google Scholar] [CrossRef]
- Vieira, W.T.; Bispo, M.D.; De Melo Farias, S.; De Almeida, A.D.S.V.; Da Silva, T.L.; Vieira, M.G.A.; Soletti, J.I.; Balliano, T.L. Activated carbon from macauba endocarp (Acrocomia aculeate) for removal of atrazine: Experimental and theoretical investigation using descriptors based on DFT. J. Environ. Chem. Eng. 2021, 9, 105155. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Rev. A.02; Gaussian Inc.: Wallingford, UK, 2009. [Google Scholar]
- Perry, S.T.; Hambly, E.M.; Fletcher, T.H.; Solum, M.S.; Pugmire, R.J. Solid-state 13C NMR characterization of matched tars and chars from rapid coal devolatilization. Proc. Combust. Inst. 2000, 28, 2313–2319. [Google Scholar] [CrossRef]
- Liu, L.; Lin, Y.; Liu, Y.; Zhu, H.; He, Q. Removal of Methylene Blue from aqueous solutions by sewage sludge based granular activated carbon: Adsorption equilibrium, kinetics, and thermodynamics. J. Chem. Eng. Data 2013, 58, 2248–2253. [Google Scholar] [CrossRef]
- Padak, B.; Brunetti, M.; Lewis, A.; Wilcox, J. Mercury binding on activated carbon. Environ. Prog. 2006, 25, 319–326. [Google Scholar] [CrossRef]
- Radovic, L.R. The mechanism of CO2 chemisorption on zigzag carbon active sites: A computational chemistry study. Carbon N. Y. 2005, 43, 907–915. [Google Scholar] [CrossRef]
- Shen, F.; Liu, J.; Zhang, Z.; Dong, Y.; Gu, C. Density functional study of hydrogen sulfide adsorption mechanism on activated carbon. Fuel Process. Technol. 2018, 171, 258–264. [Google Scholar] [CrossRef]
- Thang, P.Q.; Jitae, K.; Giang, B.L.; Viet, N.M.; Huong, P.T. Potential application of chicken manure biochar towards toxic phenol and 2,4-dinitrophenol in wastewaters. J. Environ. Manag. 2019, 251, 109556. [Google Scholar] [CrossRef]
System | Mode of Interaction | Adsorption Energy (kJ/mol) | Bond Length (Å) |
---|---|---|---|
C7H7-OH + AC | C7H7-OH----C-AC | −416.47 | 1.40 (Ocresol-CAC) 1.08 (Hcresol-CAC) |
C7H7-OH + AC-OH | C7H7-OH----HO-AC | −54.73 | 1.65 (Ocresol-HAC-OH) |
C7H7-OH + AC-CHO | C7H7-OH----OHC-AC | −49.99 | 1.72 (Hcresol-OAC-COOH) |
C7H7-OH + AC-COOH | C7H7-OH----HOOC-AC | −63.62 | 1.87 (Hcresol-OAC-COOH) 1.68 (Ocresol-HAC-COOH) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supong, A.; Sinha, U.B.; Sinha, D. Density Functional Theory Calculations of the Effect of Oxygenated Functionals on Activated Carbon towards Cresol Adsorption. Surfaces 2022, 5, 280-289. https://doi.org/10.3390/surfaces5020020
Supong A, Sinha UB, Sinha D. Density Functional Theory Calculations of the Effect of Oxygenated Functionals on Activated Carbon towards Cresol Adsorption. Surfaces. 2022; 5(2):280-289. https://doi.org/10.3390/surfaces5020020
Chicago/Turabian StyleSupong, Aola, Upasana Bora Sinha, and Dipak Sinha. 2022. "Density Functional Theory Calculations of the Effect of Oxygenated Functionals on Activated Carbon towards Cresol Adsorption" Surfaces 5, no. 2: 280-289. https://doi.org/10.3390/surfaces5020020
APA StyleSupong, A., Sinha, U. B., & Sinha, D. (2022). Density Functional Theory Calculations of the Effect of Oxygenated Functionals on Activated Carbon towards Cresol Adsorption. Surfaces, 5(2), 280-289. https://doi.org/10.3390/surfaces5020020