Technological Peculiarities of Epsilon Ferrite Epitaxial Stabilization by PLD
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Tracking Orthorhombic-to-Trigonal Balance with Time Dependent RHEED Profiling
3.2. Gallium-Assisted Two-Stage Epitaxial Stabilization of ε-Fe2O3 Phase on GaN/Al2O3
3.3. Aluminum-Assisted Stabilization of ε-Fe2O3 Phase on Al2O3
3.4. The Stabilization of Orthorhombic k-Al2O3 Phase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, P.; Xia, C.; Zhu, Z.; Wen, Y.; Zhang, Q.; Alshareef, H.N.; Zhang, X.-X. Ultrathin Epitaxial Ferromagnetic γ-Fe2O3 Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors. Adv. Funct. Mater. 2016, 26, 5679–5689. [Google Scholar] [CrossRef]
- Golosova, N.O.; Kozlenko, D.P.; Kichanov, S.E.; Lukin, E.V.; Dubrovinsky, L.S.; Mammadov, A.I.; Mehdiyeva, R.Z.; Jabarov, S.H.; Liermann, H.-P.; Glazyrin, K.V.; et al. Structural, Magnetic and Vibrational Properties of Multiferroic GaFeO3 at High Pressure. J. Alloy. Compd. 2016, 684, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Raghavendra Reddy, V.; Gupta, A.; Choudhary, R.J.; Phase, D.M.; Ganesan, V. Study of Site-Disorder in Epitaxial Magneto-Electric GaFeO3 Thin Films. Appl. Phys. Lett. 2013, 102, 212401. [Google Scholar] [CrossRef]
- Jung, J.H. Optical Magnetoelectric Absorption and Diffraction in GaFeO3. Media 2005, 46, 508–512. [Google Scholar]
- Yoshikiyo, M.; Futakawa, Y.; Shimoharai, R.; Ikeda, Y.; MacDougall, J.; Namai, A.; Ohkoshi, S. Aluminum-Titanium-Cobalt Substituted Epsilon Iron Oxide Nanosize Hard Magnetic Ferrite for Magnetic Recording and Millimeter Wave Absorption. Chem. Phys. Lett. 2022, 803, 139821. [Google Scholar] [CrossRef]
- Cleron, J.; Baker, A.A.; Nakotte, T.; Troksa, A.; Han, J. Exploring Critical Synthetic Parameters for Nanoscale ε-Fe2O3 and Their Influence on Magnetic Behaviors. J. Phys. Chem. C 2022, 126, 7256–7263. [Google Scholar] [CrossRef]
- López-Sánchez, J.; Serrano, A.; del Campo, A.; Muñoz-Noval, Á.; Salas-Colera, E.; Cabero, M.; Varela, M.; Abuín, M.; Castro, G.R.; Rubio-Zuazo, J.; et al. A Combined Micro-Raman, X-Ray Absorption and Magnetic Study to Follow the Glycerol-Assisted Growth of Epsilon-Iron Oxide Sol-Gel Coatings. J. Alloy. Compd. 2021, 892, 162061. [Google Scholar] [CrossRef]
- Gich, M.; Gazquez, J.; Roig, A.; Crespi, A.; Fontcuberta, J.; Idrobo, J.C.; Pennycook, S.J.; Varela, M.; Skumryev, V.; Varela, M. Epitaxial Stabilization of ε-Fe2O3 (00l) Thin Films on SrTiO3 (111). Appl. Phys. Lett. 2010, 96, 112508. [Google Scholar] [CrossRef] [Green Version]
- Suturin, S.M.; Korovin, A.M.; Gastev, S.V.; Volkov, M.P.; Sitnikova, A.A.; Kirilenko, D.A.; Tabuchi, M.; Sokolov, N.S. Tunable Polymorphism of Epitaxial Iron Oxides in the Four-in-One Ferroic-on-GaN System with Magnetically Ordered α-, γ-, ε-Fe2O3 and Fe3O4 Layers. Phys. Rev. Mater. 2018, 2, 073403. [Google Scholar] [CrossRef] [Green Version]
- Ukleev, V.; Suturin, S.; Nakajima, T.; Arima, T.; Saerbeck, T.; Hanashima, T.; Sitnikova, A.; Kirilenko, D.; Yakovlev, N.; Sokolov, N. Unveiling Structural, Chemical and Magnetic Interfacial Peculiarities in ε-Fe2O3/GaN (0001) Epitaxial Films. Sci. Rep. 2018, 8, 8741. [Google Scholar] [CrossRef] [Green Version]
- Gich, M.; Roig, A.; Frontera, C.; Molins, E.; Sort, J.; Popovici, M.; Chouteau, G.; Martín y Marero, D.; Nogués, J. Large Coercivity and Low-Temperature Magnetic Reorientation in ε-Fe2O3 Nanoparticles. J. Appl. Phys. 2005, 98, 044307. [Google Scholar] [CrossRef]
- Tokoro, H.; Fukui, J.; Watanabe, K.; Yoshikiyo, M.; Namai, A.; Ohkoshi, S. Crystal Growth Control of Rod-Shaped ε-Fe2O3 Nanocrystals. RSC Adv. 2020, 10, 39611–39616. [Google Scholar] [CrossRef]
- Gu, Y.; Yoshikiyo, M.; Namai, A.; Bonvin, D.; Martinez, A.; Piñol, R.; Téllez, P.; Silva, N.J.O.; Ahrentorp, F.; Johansson, C.; et al. Magnetic Hyperthermia with ε-Fe2O3 Nanoparticles. RSC Adv. 2020, 10, 28786–28797. [Google Scholar] [CrossRef]
- Klekotka, U.; Satuła, D.; Kalska-Szostko, B. ε-Phase of Iron Oxide out of Thermally Treated Magnetite Nanoparticles. J. Magn. Magn. Mater. 2020, 497, 165999. [Google Scholar] [CrossRef]
- Gich, M.; Fina, I.; Morelli, A.; Sánchez, F.; Alexe, M.; Gàzquez, J.; Fontcuberta, J.; Roig, A. Multiferroic Iron Oxide Thin Films at Room Temperature. Adv. Mater. 2014, 26, 4645–4652. [Google Scholar] [CrossRef] [Green Version]
- Ohkoshi, S.-I.; Namai, A.; Imoto, K.; Yoshikiyo, M.; Tarora, W.; Nakagawa, K.; Komine, M.; Miyamoto, Y.; Nasu, T.; Oka, S.; et al. Nanometer-Size Hard Magnetic Ferrite Exhibiting High Optical-Transparency and Nonlinear Optical-Magnetoelectric Effect. Sci. Rep. 2015, 5, 14414. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.F. Multiferroic Memories. Nat Mater 2007, 6, 256–257. [Google Scholar] [CrossRef]
- Gajek, M.; Bibes, M.; Fusil, S.; Bouzehouane, K.; Fontcuberta, J.; Barthélémy, A.; Fert, A. Tunnel Junctions with Multiferroic Barriers. Nat. Mater. 2007, 6, 296–302. [Google Scholar] [CrossRef]
- Ortega, N.; Kumar, A.; Scott, J.F.; Katiyar, R.S. Multifunctional Magnetoelectric Materials for Device Applications. J. Phys. Condens. Matter 2015, 27, 504002. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.-M.; Duan, C.-G.; Nan, C.-W.; Chen, L.-Q. Understanding and Designing Magnetoelectric Heterostructures Guided by Computation: Progresses, Remaining Questions, and Perspectives. NPJ Comput. Mater. 2017, 3, 18. [Google Scholar] [CrossRef]
- López-Sánchez, J.; Serrano, A.; Del Campo, A.; Abuín, M.; Rodríguez de la Fuente, O.; Carmona, N. Sol–Gel Synthesis and Micro-Raman Characterization of ε-Fe2O3 Micro- and Nanoparticles. Chem. Mater. 2016, 28, 511–518. [Google Scholar] [CrossRef]
- Namai, A.; Yoshikiyo, M.; Yamada, K.; Sakurai, S.; Goto, T.; Yoshida, T.; Miyazaki, T.; Nakajima, M.; Suemoto, T.; Tokoro, H.; et al. Hard Magnetic Ferrite with a Gigantic Coercivity and High Frequency Millimetre Wave Rotation. Nat. Commun. 2012, 3, 1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thai, T.M.N.; Nguyen, D.T.; Lee, N.-S.; Rhyee, J.-S.; Song, J.; Kim, H.-J. Stabilization of Metastable ε-Fe2O3 Thin Films Using a GaFeO3 Buffer. J. Appl. Phys. 2016, 120, 185304. [Google Scholar] [CrossRef]
- Corbellini, L.; Lacroix, C.; Harnagea, C.; Korinek, A.; Botton, G.A.; Ménard, D.; Pignolet, A. Epitaxially Stabilized Thin Films of ε-Fe2O3 (001) Grown on YSZ (100). Sci. Rep. 2017, 7, 3712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suturin, S.M.; Korovin, A.M.; Sitnikova, A.A.; Kirilenko, D.A.; Volkov, M.P.; Dvortsova, P.A.; Ukleev, V.A.; Tabuchi, M.; Sokolov, N.S. Correlation between Crystal Structure and Magnetism in PLD Grown Epitaxial Films of ε-Fe 2 O 3 on GaN. Sci. Technol. Adv. Mater. 2021, 22, 85–99. [Google Scholar] [CrossRef]
- Suturin, S.M.; Dvortsova, P.A.; Snigirev, L.A.; Ukleev, V.A.; Hanashima, T.; Rosado, M.; Ballesteros, B. Structural Peculiarities of ε-Fe2O3/GaN Epitaxial Layers Unveiled by High-Resolution Transmission Electron Microscopy and Neutron Reflectometry. Mater. Today Commun. 2022, 33, 104412. [Google Scholar] [CrossRef]
- Sun, C.J.; Kung, P.; Saxler, A.; Ohsato, H.; Bigan, E.; Razeghi, M.; Gaskill, D.K. Thermal Stability of GaN Thin Films Grown on (0001) Al2O3, (011¯2) Al2O3 and (0001)Si 6H-SiC Substrates. J. Appl. Phys. 1994, 76, 236–241. [Google Scholar] [CrossRef]
- Huang, S.; Gu, S.; Tang, K.; Ye, J.; Xu, Z.; Zhu, S.; Zheng, Y. Influence of Oxygen Precursors and Annealing on Fe3O4 Films Grown on GaN Templates by Metal Organic Chemical Vapor Deposition. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2014, 32, 052801. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, S.; Tang, K.; Gu, S.; Zhu, S.; Ye, J.; Xu, M.; Wang, W.; Zheng, Y. The Compositional, Structural, and Magnetic Properties of a Fe3O4/Ga2O3/GaN Spin Injecting Hetero-Structure Grown by Metal-Organic Chemical Vapor Deposition. Appl. Surf. Sci. 2016, 388, 141–147. [Google Scholar] [CrossRef]
- Corbellini, L.; Lacroix, C.; Ménard, D.; Pignolet, A. The Effect of Al Substitution on the Structural and Magnetic Properties of Epitaxial Thin Films of Epsilon Ferrite. Scr. Mater. 2017, 140, 63–66. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Kuroki, S.; Sakurai, S.; Matsumoto, K.; Sato, K.; Sasaki, S. A Millimeter-Wave Absorber Based on Gallium-Substituted ε-Iron Oxide Nanomagnets. Angew. Chem. Int. Ed. 2007, 46, 8392–8395. [Google Scholar] [CrossRef]
- Namai, A.; Sakurai, S.; Nakajima, M.; Suemoto, T.; Matsumoto, K.; Goto, M.; Sasaki, S.; Ohkoshi, S. Synthesis of an Electromagnetic Wave Absorber for High-Speed Wireless Communication. J. Am. Chem. Soc. 2009, 131, 1170–1173. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Namai, A.; Sakurai, S. The Origin of Ferromagnetism in ε-Fe2O3 and ε-GaxFe2−xO3 Nanomagnets. J. Phys. Chem. C 2009, 113, 11235–11238. [Google Scholar] [CrossRef]
- Saha, R.; Shireen, A.; Shirodkar, S.N.; Waghmare, U.V.; Sundaresan, A.; Rao, C.N.R. Multiferroic and Magnetoelectric Nature of GaFeO3, AlFeO3 and Related Oxides. Solid State Commun. 2012, 152, 1964–1968. [Google Scholar] [CrossRef] [Green Version]
- Ollivier, B.; Retoux, R.; Lacorre, P.; Massiot, D.; Férey, G. Crystal Structure of κ-Alumina: An X-Ray Powder Diffraction, TEM and NMR Study. J. Mater. Chem. 1997, 7, 1049–1056. [Google Scholar] [CrossRef]
- Smrčok, L.; Langer, V.; Halvarsson, M.; Ruppi, S. A New Rietveld Refinement of κ-Al2O3. Z. Krist. Cryst. Mater. 2001, 216, 409–412. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dvortsova, P.A.; Suturin, S.M. Technological Peculiarities of Epsilon Ferrite Epitaxial Stabilization by PLD. Surfaces 2022, 5, 445-455. https://doi.org/10.3390/surfaces5040032
Dvortsova PA, Suturin SM. Technological Peculiarities of Epsilon Ferrite Epitaxial Stabilization by PLD. Surfaces. 2022; 5(4):445-455. https://doi.org/10.3390/surfaces5040032
Chicago/Turabian StyleDvortsova, Polina A., and Sergey M. Suturin. 2022. "Technological Peculiarities of Epsilon Ferrite Epitaxial Stabilization by PLD" Surfaces 5, no. 4: 445-455. https://doi.org/10.3390/surfaces5040032
APA StyleDvortsova, P. A., & Suturin, S. M. (2022). Technological Peculiarities of Epsilon Ferrite Epitaxial Stabilization by PLD. Surfaces, 5(4), 445-455. https://doi.org/10.3390/surfaces5040032