Charged Hybrid Microstructures in Transparent Thin-Film ITO Traps: Localization and Optical Control
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RF | Radio-frequency |
ITO | Indium tin oxide |
UV | Ultraviolet |
SW | Single-well |
DW | Double-well |
Appendix A. ITO Double Well Trap Model
References
- Paul, W. Electromagnetic traps for charged and neutral particles (Nobel lecture). Angew. Chem. Int. Ed. Engl. 1990, 29, 739–748. [Google Scholar] [CrossRef]
- Kajita, M. Ion Traps: A Gentle Introduction; IOP Publishing: Bristol, UK, 2022. [Google Scholar]
- Mihalcea, B.M.; Giurgiu, L.C.; Stan, C.; Vişan, G.T.; Ganciu, M.; Filinov, V.; Lapitsky, D.; Deputatova, L.; Syrovatka, R. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions. J. Appl. Phys. 2016, 119, 114303. [Google Scholar] [CrossRef]
- Nolting, D.; Malek, R.; Makarov, A. Ion traps in modern mass spectrometry. Mass Spectrom. Rev. 2019, 38, 150–168. [Google Scholar] [CrossRef]
- Guo, Q.; Gao, L.; Zhai, Y.; Xu, W. Recent developments of miniature ion trap mass spectrometers. Chin. Chem. Lett. 2018, 29, 1578–1584. [Google Scholar] [CrossRef]
- Häffner, H.; Roos, C.F.; Blatt, R. Quantum computing with trapped ions. Phys. Rep. 2008, 469, 155–203. [Google Scholar] [CrossRef]
- Monroe, C.; Kim, J. Scaling the ion trap quantum processor. Science 2013, 339, 1164–1169. [Google Scholar] [CrossRef]
- Nop, G.N.; Paudyal, D.; Smith, J.D. Ytterbium ion trap quantum computing: The current state-of-the-art. AVS Quantum Sci. 2021, 3, 044101. [Google Scholar] [CrossRef]
- Noel, C.; Kozhanov, A.; Cetina, M.; Monroe, C. Trapped ion quantum computers: Challenges and opportunities. In Proceedings of the APS March Meeting 2023, Las Vegas, NV, USA, 5–10 March 2023. [Google Scholar]
- Ghosh, I.; Saxena, V.; Krishnamachari, A. Study of Plasma Distribution Function in a Paul Trap using Palette Mapped 3D Plots. In Proceedings of the 2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON), Kolkata, India, 26–27 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 312–318. [Google Scholar]
- Deputatova, L.; Syrovatka, R.; Vasilyak, L.; Filinov, V.; Lapitsky, D.; Vladimirov, V.; Pecherkin, V.Y. Linear electrodynamic trap as a tool for cleaning dusty surfaces. Contrib. Plasma Phys. 2019, 59, 340–344. [Google Scholar] [CrossRef]
- Rybin, V.; Rudyi, S.; Rozhdestvensky, Y. Nano-and microparticle Nonlinear Damping Identification in quadrupole trap. Int. J. Non-Linear Mech. 2022, 147, 104227. [Google Scholar] [CrossRef]
- Xiong, C.; Liu, H.; Liu, C.; Xue, J.; Zhan, L.; Nie, Z. Mass, size, and density measurements of microparticles in a quadrupole ion trap. Anal. Chem. 2019, 91, 13508–13513. [Google Scholar] [CrossRef]
- Farr, A.; Allen, C.; Hilleke, R.; Clark, R. Fluorescent Quantum-Sized Carbon Dots Isolated in an rf Paul Trap. In Proceedings of the APS March Meeting Abstracts, Baltimore, MD, USA, 18–22 March 2013; Volume 2013, pp. 1–114. [Google Scholar]
- Nemova, G. Laser cooling and trapping of rare-earth-doped particles. Appl. Sci. 2022, 12, 3777. [Google Scholar] [CrossRef]
- Howder, C.R.; Long, B.A.; Bell, D.M.; Furakawa, K.H.; Johnson, R.C.; Fang, Z.; Anderson, S.L. Photoluminescence of charged CdSe/ZnS quantum dots in the gas phase: Effects of charge and heating on absorption and emission probabilities. ACS Nano 2014, 8, 12534–12548. [Google Scholar] [CrossRef]
- March, R.E. Quadrupole ion traps. Mass Spectrom. Rev. 2009, 28, 961–989. [Google Scholar] [CrossRef]
- Fernandez-Gonzalvo, X.; Keller, M. A fully fiber-integrated ion trap for portable quantum technologies. Sci. Rep. 2023, 13, 523. [Google Scholar] [CrossRef]
- Eltony, A.M.; Wang, S.X.; Akselrod, G.M.; Herskind, P.F.; Chuang, I.L. Transparent ion trap with integrated photodetector. Appl. Phys. Lett. 2013, 102, 054106. [Google Scholar] [CrossRef]
- Stockett, M.H.; Houmøller, J.; Støchkel, K.; Svendsen, A.; Brøndsted Nielsen, S. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy. Rev. Sci. Instrum. 2016, 87, 053103. [Google Scholar] [CrossRef]
- Araneda, G.; Cerchiari, G.; Higginbottom, D.B.; Holz, P.C.; Lakhmanskiy, K.; Obšil, P.; Colombe, Y.; Blatt, R. The Panopticon device: An integrated Paul-trap–hemispherical mirror system for quantum optics. Rev. Sci. Instrum. 2020, 91, 113201. [Google Scholar] [CrossRef]
- Torres, I.; Fernández, S.; Fernández-Vallejo, M.; Arnedo, I.; Gandía, J.J. Graphene-based electrodes for silicon heterojunction solar cell technology. Materials 2021, 14, 4833. [Google Scholar] [CrossRef]
- Salih, E.Y.; Ramizy, A.; Aldaghri, O.; Mohd Sabri, M.F.; Madkhali, N.; Alinad, T.; Ibnaouf, K.H.; Eisa, M.H. In-depth optical analysis of Zn (Al) O mixed metal oxide film-based Zn/Al-layered double hydroxide for TCO application. Crystals 2022, 12, 79. [Google Scholar] [CrossRef]
- Cirocka, A.; Zarzeczańska, D.; Wcisło, A. Good Choice of Electrode Material as the Key to Creating Electrochemical Sensors—Characteristics of Carbon Materials and Transparent Conductive Oxides (TCO). Materials 2021, 14, 4743. [Google Scholar] [CrossRef]
- Ji, C.; Liu, D.; Zhang, C.; Jay Guo, L. Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%. Nat. Commun. 2020, 11, 3367. [Google Scholar] [CrossRef] [PubMed]
- Kurdesau, F.; Khripunov, G.; Da Cunha, A.; Kaelin, M.; Tiwari, A. Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature. J. Non-Cryst. Solids 2006, 352, 1466–1470. [Google Scholar] [CrossRef]
- Tuna, O.; Selamet, Y.; Aygun, G.; Ozyuzer, L. High quality ITO thin films grown by dc and RF sputtering without oxygen. J. Phys. D Appl. Phys. 2010, 43, 055402. [Google Scholar] [CrossRef]
- Kosarian, A.; Shakiba, M.; Farshidi, E. Role of sputtering power on the microstructural and electro-optical properties of ITO thin films deposited using DC sputtering technique. IEEJ Trans. Electr. Electron. Eng. 2018, 13, 27–31. [Google Scholar] [CrossRef]
- Amalathas, A.P.; Alkaisi, M.M. Effects of film thickness and sputtering power on properties of ITO thin films deposited by RF magnetron sputtering without oxygen. J. Mater. Sci. Mater. Electron. 2016, 27, 11064–11071. [Google Scholar] [CrossRef]
- Cruz, L.; Legnani, C.; Matoso, I.; Ferreira, C.; Moutinho, H. Influence of pressure and annealing on the microstructural and electro-optical properties of RF magnetron sputtered ITO thin films. Mater. Res. Bull. 2004, 39, 993–1003. [Google Scholar] [CrossRef]
- Amosova, L. Electrooptical properties and structural features of amorphous ITO. Semiconductors 2015, 49, 414–418. [Google Scholar] [CrossRef]
- Amosova, L.; Isaev, M. Deposition of transparent indium tin oxide electrodes by magnetron sputtering of a metallic target on a cold substrate. Tech. Phys. 2014, 59, 1545–1549. [Google Scholar] [CrossRef]
- Konshina, E.; Shcherbinin, D.; Kurochkina, M. Comparison of the properties of nematic liquid crystals doped with TiO2 and CdSe/ZnS nanoparticles. J. Mol. Liq. 2018, 267, 308–314. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, Q.; Xiong, Y.; Ji, T.; Wang, C.; Shen, X.; Lu, M.; Wang, H.; Wen, S.; Zhang, Y.; et al. Energy level modification with carbon dot interlayers enables efficient perovskite solar cells and quantum dot based light-emitting diodes. Adv. Funct. Mater. 2020, 30, 1910530. [Google Scholar] [CrossRef]
- Almaev, A.V.; Kopyev, V.V.; Novikov, V.A.; Chikiryaka, A.V.; Yakovlev, N.N.; Usseinov, A.B.; Karipbayev, Z.T.; Akilbekov, A.T.; Koishybayeva, Z.K.; Popov, A.I. ITO Thin Films for Low-Resistance Gas Sensors. Materials 2022, 16, 342. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, L.; Hui, L.; Jin, X.; Ma, B. Indium tin oxide thin-film thermocouple probe based on sapphire microrod. Sensors 2020, 20, 1289. [Google Scholar] [CrossRef]
- Kokorina, O.O.; Rybin, V.V.; Rudyi, S.S.; Rozhdestvensky, Y.V. Double-well effective potential in a linear Paul trap with end-cap electrodes. In Proceedings of the Quantum Nanophotonic Materials, Devices, and Systems 2021, International Society for Optics and Photonics, San Diego, CA, USA, 1 August 2021; Volume 11806, p. 118060U. [Google Scholar]
- Wang, X.-Y.; Ren, Y.; Hong, Y.; Huang, Q.; Chen, Z.-G.; Yuan, L.-Y.; Huang, Z.-X.; Li, M.; Zhou, Z. Design and Simulation of a Double Potential Well Flat Ion Trap. J. Chin. Mass Spectrom. Soc. 2023, 44, 34. [Google Scholar]
- Malek, R.; Wanczek, K. Trapping and excitation of ions in a double well potential. Rapid Commun. Mass Spectrom. 1997, 11, 1616–1618. [Google Scholar] [CrossRef]
- Tanaka, U.; Suzuki, K.; Ibaraki, Y.; Urabe, S. Design of a surface electrode trap for parallel ion strings. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 035301. [Google Scholar] [CrossRef]
- Tao, J.; Likforman, J.P.; Zhao, P.; Li, H.Y.; Henner, T.; Lim, Y.D.; Seit, W.W.; Guidoni, L.; Tan, C.S. Large-Scale Fabrication of Surface Ion Traps on a 300 mm Glass Wafer. Phys. Status Solidi 2021, 258, 2000589. [Google Scholar] [CrossRef]
- Kurshanov, D.A.; Khavlyuk, P.D.; Baranov, M.A.; Dubavik, A.; Rybin, A.V.; Fedorov, A.V.; Baranov, A.V. Magneto-fluorescent hybrid sensor CaCO3-Fe3O4-AgInS2/ZnS for the detection of heavy metal ions in aqueous media. Materials 2020, 13, 4373. [Google Scholar] [CrossRef]
- Peng, W.P.; Lin, H.C.; Chu, M.L.; Chang, H.C.; Lin, H.H.; Yu, A.L.; Chen, C.H. Charge monitoring cell mass spectrometry. Anal. Chem. 2008, 80, 2524–2530. [Google Scholar] [CrossRef]
- Gerlich, D. Inhomogeneous RF fields: A versatile tool for the study of processes with slow ions. State-Sel. State-Ion-Mol. React. Dyn. Part 1 Exp. 1992, 82, 1–176. [Google Scholar]
- Rudyi, S.S.; Vovk, T.A.; Rozhdestvensky, Y.V. Features of the effective potential formed by multipole ion trap. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 095001. [Google Scholar] [CrossRef]
- Lechner, K. Classical Electrodynamics; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Abbas, M.; Craven, P.; Spann, J.; Witherow, W.; West, E.; Gallagher, D.; Adrian, M.; Fishman, G.; Tankosic, D.; LeClair, A.; et al. Radiation pressure measurements on micron-size individual dust grains. J. Geophys. Res. Space Phys. 2003, 108, A6. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shcherbinin, D.; Rybin, V.; Rudyi, S.; Dubavik, A.; Cherevkov, S.; Rozhdestvensky, Y.; Ivanov, A. Charged Hybrid Microstructures in Transparent Thin-Film ITO Traps: Localization and Optical Control. Surfaces 2023, 6, 133-144. https://doi.org/10.3390/surfaces6020010
Shcherbinin D, Rybin V, Rudyi S, Dubavik A, Cherevkov S, Rozhdestvensky Y, Ivanov A. Charged Hybrid Microstructures in Transparent Thin-Film ITO Traps: Localization and Optical Control. Surfaces. 2023; 6(2):133-144. https://doi.org/10.3390/surfaces6020010
Chicago/Turabian StyleShcherbinin, Dmitrii, Vadim Rybin, Semyon Rudyi, Aliaksei Dubavik, Sergei Cherevkov, Yuri Rozhdestvensky, and Andrei Ivanov. 2023. "Charged Hybrid Microstructures in Transparent Thin-Film ITO Traps: Localization and Optical Control" Surfaces 6, no. 2: 133-144. https://doi.org/10.3390/surfaces6020010
APA StyleShcherbinin, D., Rybin, V., Rudyi, S., Dubavik, A., Cherevkov, S., Rozhdestvensky, Y., & Ivanov, A. (2023). Charged Hybrid Microstructures in Transparent Thin-Film ITO Traps: Localization and Optical Control. Surfaces, 6(2), 133-144. https://doi.org/10.3390/surfaces6020010