Spectra of Low Energy Electrons Emitted in the Interaction of Slow Ne+ Ions with Mg Surfaces
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
3.1. General Features of the Spectra
3.2. 2p4 Excitation of Scattered Projectiles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riccardi, P. Electron Spectroscopy of Charge Exchange Effects in Low Energy Ion Scattering at Surfaces: Case Studies of Heavy Ions at Al Surface. Surfaces 2023, 6, 64. [Google Scholar] [CrossRef]
- Han, W.; Zheng, M.; Banerjee, A.; Luo, Y.Z.; Shen, L.; Khursheed, A. Quantitative material analysis using secondary electron energy spectromicroscopy. Sci. Rep. 2020, 10, 22144. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, A.J.; Chirayath, V.A.; Sterne, P.A.; Gladen, R.W.; Koymen, A.R.; Weiss, A.H. Direct evidence for low-energy electron emission following O LVV Auger transitions at oxide surfaces. Sci. Rep. 2020, 10, 17993. [Google Scholar] [CrossRef]
- Hagstrum, H.D. Low energy de-excitation and neutralization processes near surfaces. In Inelastic Ion-Surface Collisions; Tolk, N.H., Tully, J.C., Heiland, W., White, C.W., Eds.; Academic Press: New York, NY, USA, 1977; Volume 1. [Google Scholar]
- Monreal, R. Auger Neutralization and Ionization Processes for Charge Exchange between Slow Noble Gas Atoms and Solid Surfaces. Prog. Surf. Sci. 2014, 89, 80. [Google Scholar] [CrossRef] [Green Version]
- Baragiola, R.A. Electron Emission from Slow Ion-Solid Interactions. In Low Energy Ion-Surface Interactions; Rabalais, J.W., Ed.; Wiley: New York, NY, USA, 1994; Chapter 4. [Google Scholar]
- Baragiola, R.A.; Monreal, R.C. Electron Emission from Surfaces Mediated by Ion-Induced Plasmon Excitation. In Slow Heavy-Particle Induced Electron Emission from Solid Surfaces; Springer Tracts in Modern Physics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 225. [Google Scholar]
- Winter, H.; Lederer, S.; Winter, H. Fermi Momentum Above Metal Surfaces from Electrons Ejected by Impact of He Ions. Europhys. Lett. 2006, 75, 964. [Google Scholar] [CrossRef]
- Rabalais, J.; Bu, H.; Roux, C. Impact-Parameter Dependence of Ar+-Induced Kinetic Electron Emission from Ni(110). Phys. Rev. Lett. 1992, 69, 1391. [Google Scholar] [CrossRef] [PubMed]
- Lorincik, J.; Sroubek, Z.; Eder, H.; Aumayr, F.; Winter, H. Kinetic Electron Emission from Clean Polycrystalline Gold Induced by Impact of Slow C+, N+, O+, Ne+, Xe+, and Au+ Ions. Phys. Rev. B 2000, 62, 16116. [Google Scholar] [CrossRef]
- Lederer, S.; Maass, K.; Blauth, D.; Winter, H.; Winter, H.P.; Aumayr, F. Kinetic electron emission from the selvage of a free-electron-gas metal. Phys. Rev. B 2003, 67, 121405. [Google Scholar] [CrossRef]
- Monreal, R.; Apell, S.P. Magic energies in Auger electron spectra Nucl. Instr. Meth. Phys. Res. B 1993, 83, 459. [Google Scholar] [CrossRef]
- Hagstrum, H.D.; Takeishi, Y.; Pretzer, D.D. Energy Broadening in the Auger-Type Neutralization of Slow Ions at Solid Surfaces. Phys. Rev. 1965, 139, A526. [Google Scholar] [CrossRef]
- Fano, U.; Lichten, W. Interpretation of Ar+- Ar Collisions at 50 keV. Phys. Rev. Lett. 1965, 14, 627. [Google Scholar] [CrossRef]
- Barat, M.; Lichten, W. Extension of the Electron-Promotion Model to Asymmetric Atomic Collisions. Phys. Rev. A 1972, 6, 211–229. [Google Scholar] [CrossRef]
- Runco, D.; Riccardi, P. Single Versus Double 2p Excitation in Neon Projectiles Scattered from Surfaces. Phys. Rev. A 2021, 104, 042810. [Google Scholar] [CrossRef]
- Runco, D.; Riccardi, P. Collisional excitation in Neon-like projectiles scattered from Al. Solid State Commun. 2021, 340, 114534. [Google Scholar] [CrossRef]
- Runco, D.; Riccardi, P. Charge and excitation state of Na projectiles scattered from Al surfaces. Radiat. Eff. Defects Solids 2021, 176, 995–1002. [Google Scholar] [CrossRef]
- Riccardi, P.; Dukes, C.A. Excitation of the Triplet 2p4(3P)3s2Autoionixing State of Neon by Molecular Orbital Electron Promotion at Solid Surfaces. Chem. Phys. Lett. 2022, 798, 139610. [Google Scholar] [CrossRef]
- Riccardi, P.; Dukes, C. Effects of the solid target on electronic excitations during binary atomic collisions in the interaction of Ne ions with Al surfaces. Vacuum 2022, 204, 111393. [Google Scholar] [CrossRef]
- Lohmann, S.; Holeňák, R.; Grande, P.L.; Primetzhofer, D. Trajectory dependence of electronic energy-loss straggling at keV ion energies. Phys. Rev. B 2023, 107, 085110. [Google Scholar] [CrossRef]
- Ntemou, E.; Lohmann, S.; Holenák, R.; Primetzhofer, D. Electronic interaction of slow hydrogen, helium, nitrogen, and neon ions with silicon. Phys. Rev. B 2023, 107, 155145. [Google Scholar] [CrossRef]
- Lohmann, S.; Holeňák, R.; Primetzhofer, D. Trajectory-dependent electronic excitations by light and heavy ions around and below the Bohr velocity. Phys. Rev. A 2020, 102, 062803. [Google Scholar] [CrossRef]
- Lohmann, S.; Primetzhofer, D. Disparate Energy Scaling of Trajectory-Dependent Electronic Excitations for Slow Protons and He Ions. Phys. Rev. Lett. 2020, 124, 096601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holenak, R.; Lohman, S.; Sekula, F.; Primetzhofer, D. Simultaneous Assessment of Energy, Charge State and Angula Distribution for Medium Energy Ions Interacting with Ultra-Thin Self-Supporting Targets: A time-of-Flight Approach. Vacuum 2021, 185, 109988. [Google Scholar] [CrossRef]
- Ntemou, E.; Holeňák, R.; Primetzhofer, D. Energy deposition by H and He ions at keV energies in self-supporting, single crystalline SiC foils. Radiat. Phys. Chem. 2022, 194, 110033. [Google Scholar] [CrossRef]
- Valpreda, A.; Sturm, J.M.; Yakshin, A.E.; Ackermann, M. Resolving buried interfaces with low energy ion scattering. J. Vac. Sci. Technol. A 2023, 41, 043203. [Google Scholar] [CrossRef]
- Mousley, M.; Tabean, S.; Bouton, O.; Hoang, Q.H.; Wirtz, T.; Eswara, S. Scanning Transmission Ion Microscopy Time-of-Flight Spectroscopy Using 20 keV Helium Ions. Microsc. Microanal. 2023, 29, 563–573. [Google Scholar] [CrossRef]
- Liu, P.; Yin, L.; Zhang, Z.; Ding, B.; Shi, Y.; Li, Y.; Zhang, X.; Song, X.; Guo, Y.; Chen, L.; et al. Anomalous Neutralization Characteristics in Na+Neutralization on Al(111) Surfaces. Phys. Rev. A 2020, 101, 032706. [Google Scholar] [CrossRef]
- Wei, M.; Wang, X.; Guo, X.; Liu, P.; Ding, B.; Shi, Y.; Song, X.; Wang, L.; Liu, X.; Yin, L.; et al. Low-energy Na+ neutralization on Al(1 1 1) and Cu(1 1 0) surfaces at grazing incidence. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 478, 239–243. [Google Scholar] [CrossRef]
- Li, S.-M.; Mao, F.; Zhao, X.-D.; Li, B.-S.; Jin, W.-Q.; Zuo, W.-Q.; Wang, F.; Zhang, F.-S. First-principles study of the electronic stopping power of indium for protons and He ions. Phys. Rev. B 2021, 104, 214104. [Google Scholar] [CrossRef]
- Lancaster, J.C.; Kontur, F.J.; Walters, G.K.; Dunning, F.B. Neutralization of low-energy He+ ions at a magnesium surface. Nucl. Instrum. Methods B 2007, 256, 37. [Google Scholar] [CrossRef]
- Gutierrez, F.A.; Salas, C.; Jouin, H. Bulk plasmon induced ion neutralization near metal surfaces. Surf. Sci. 2012, 606, 1293. [Google Scholar] [CrossRef]
- Mandarino, N.; Zoccali, P.; Oliva, A.; Camarca, M.; Bonanno, A.; Xu, F. Near-threshold behavior of the 2p-electron excitation in Mg-Mg, Al-Al, and Si-Si symmetric collisions. Phys. Rev. A 1993, 48, 2828. [Google Scholar] [CrossRef]
- Stolterfoht, N.; Bremer, J.H.; Hoffmann, V.; Rösler, M.; Baragiola, R.; de Gortari, I. Mechanism for plasmon production by hollow atoms above and below an Al surface. Nucl. Instrum. Methods B 2001, 182, 89. [Google Scholar] [CrossRef]
- Riccardi, P.; Cosimo, F.; Sindona, A. Absence of Reionization in Low Energy Na+ scattering from Al Surfaces. Phys. Rev. A 2018, 97, 032703. [Google Scholar] [CrossRef]
- Zampieri, G.; Meier, F.; Baragiola, R. Formation of autoionizing states of Ne in collisions with surfaces. Phys. Rev. A 1984, 29, 116–122. [Google Scholar] [CrossRef]
- Xu, F.; Mandarino, N.; Oliva, A.; Zoccali, P.; Camarca, M.; Bonanno, A.; Baragiola, R.A. Projectile L2,3-Shell Electron Excitation in Slow Ne+-Al Collisions. Phys. Rev. A 1994, 50, 4040. [Google Scholar] [CrossRef] [PubMed]
- Guillemot, L.; Lacombe, S.; Tuan, V.; Esaulov, V.; Sanchez, E.; Bandurin, Y.; Dashchenko, A.; Drobnich, V. Dynamics of excited state production in the scattering of inert gas atoms and ions from Mg and Al surfaces. Surf. Sci. 1996, 365, 353–373. [Google Scholar] [CrossRef]
- Beckschulte, M.; Taglauer, E. The influence of work function changes on the charge exchange in low-energy ion scattering. Nucl. Instrum. Methods 1993, 78, 29–37. [Google Scholar] [CrossRef]
- Souda, R.; Yamamoto, K.; Hayami, W.; Aizawa, T.; Ishizawa, Y. Band Effect on Inelastic Rare Gas Collisions with Solid Surfaces. Phys. Rev. Lett. 1995, 75, 3552–3555. [Google Scholar] [CrossRef]
- Souda, R.; Yamamoto, K.; Hayami, W.; Aizawa, T.; Ishizawa, Y. Low-energy He and Ne scattering from Al(111): Reionization versus autoionization. Surf. Sci. 1996, 363, 139–144. [Google Scholar] [CrossRef]
- Østgaard-Olsen, J.; Andersen, T.; Barat, M.; Courbin-Gaussorgues, C.; Sidis, V.; Pommier, J.; Agusti, J.; Russek, A. Excitation and Charge Transfer in Low-Energy Na+-Ne Collisions. Phys. Rev. A 1979, 19, 1457. [Google Scholar] [CrossRef]
- Bonanno, A.; Zoccali, P.; Xu, F. Ne autoionization electron emission in collisions with clean and Cs and Na covered Mg, Al, and Si surfaces. Phys. Rev. B 1994, 50, 18525. [Google Scholar] [CrossRef] [PubMed]
- Stolterfoht, N. Evidence for autoexcitation producing inner-shell vacancies in slow ion-atom collisions. Phys. Rev. A 1993, 47, R763–R766. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, P.; Sindona, A.; Dukes, C.A. Double electron excitation in He ions interacting with an aluminum surface. Phys. Rev. A 2016, 93, 042710. [Google Scholar] [CrossRef]
- Riccardi, P.; Dukes, C. 2p excitation in target atoms in the interaction of slow ions with Al surfaces. Surf. Sci. 2022, 719, 122025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccardi, P.; Dukes, C.A. Spectra of Low Energy Electrons Emitted in the Interaction of Slow Ne+ Ions with Mg Surfaces. Surfaces 2023, 6, 257-267. https://doi.org/10.3390/surfaces6030018
Riccardi P, Dukes CA. Spectra of Low Energy Electrons Emitted in the Interaction of Slow Ne+ Ions with Mg Surfaces. Surfaces. 2023; 6(3):257-267. https://doi.org/10.3390/surfaces6030018
Chicago/Turabian StyleRiccardi, Pierfrancesco, and Catherine A. Dukes. 2023. "Spectra of Low Energy Electrons Emitted in the Interaction of Slow Ne+ Ions with Mg Surfaces" Surfaces 6, no. 3: 257-267. https://doi.org/10.3390/surfaces6030018
APA StyleRiccardi, P., & Dukes, C. A. (2023). Spectra of Low Energy Electrons Emitted in the Interaction of Slow Ne+ Ions with Mg Surfaces. Surfaces, 6(3), 257-267. https://doi.org/10.3390/surfaces6030018