Understanding the Effects of Post-Deposition Sequential Annealing on the Physical and Chemical Properties of Cu2ZnSnSe4 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. GIXRD Analysis and the Determination of the Average Crystallite Size
3.2. Raman Spectrscopy
3.3. SEM Images and EDS–Measured Elemental Concentrations
3.4. Optical Measurements and the Determination of the Optical Bandgap
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, F.-I.; Yang, J.-F.; Wei, Y.-L.; Kuo, S.-Y. High Quality Sustainable Cu2ZnSnSe4(CZTSe) Absorber Layers in Highly Efficient CZTSe Solar Cells. Green Chem. 2017, 19, 795–802. [Google Scholar] [CrossRef]
- Padhy, S.; Mannu, R.; Singh, U.P. Graded Band Gap Structure of Kesterite Material Using Bilayer of CZTS and CZTSe for Enhanced Performance: A Numerical Approach. Sol. Energy 2021, 216, 601–609. [Google Scholar] [CrossRef]
- Rahimi, S.; Shooshtari, M. CZTSe-Based Solar Cell Performance Improvement Using the CSLO Technique. Appl. Sci. 2022, 12, 4119. [Google Scholar] [CrossRef]
- Wang, C.-L.; Manthiram, A. Low-Cost CZTSSe Solar Cells Fabricated with Low Band Gap CZTSe Nanocrystals, Environmentally Friendly Binder, and Nonvacuum Processes. ACS Sustain. Chem. Eng. 2014, 2, 561–568. [Google Scholar] [CrossRef]
- Zhao, Y.; Bai, Q.; Liao, P.; Ding, X.; Zuo, X.; Huang, W.; Kuang, G.; Zheng, Y.; Chai, L.; Chen, J.; et al. Radiation Hardness of Cu2ZnSn(S,Se)4 Thin Film Solar Cells under 10 MeV Proton Irradiation. Phys. Lett. A 2023, 472, 128804. [Google Scholar] [CrossRef]
- Demircioğlu, Ö.; Salas, J.F.L.; Rey, G.; Weiss, T.; Mousel, M.; Redinger, A.; Siebentritt, S.; Parisi, J.; Gütay, L. Optical Properties of Cu2ZnSnSe4 Thin Films and Identification of Secondary Phases by Spectroscopic Ellipsometry. Opt. Express 2017, 25, 5327. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Minbashi, M.; Monfared, Z.; Memarian, N.; Hajjiah, A. Improving the Efficiency of CZTSSe Solar Cells by Engineering the Lattice Defects in the Absorber Layer. Sol. Energy 2020, 208, 884–893. [Google Scholar] [CrossRef]
- Khare, A.; Himmetoglu, B.; Johnson, M.; Norris, D.J.; Cococcioni, M.; Aydil, E.S. Calculation of the Lattice Dynamics and Raman Spectra of Copper Zinc Tin Chalcogenides and Comparison to Experiments. J. Appl. Phys. 2012, 111, 083707. [Google Scholar] [CrossRef]
- Wang, A.; He, M.; Green, M.A.; Sun, K.; Hao, X. A Critical Review on the Progress of Kesterite Solar Cells: Current Strategies and Insights. Adv. Energy Mater. 2023, 13, 2203046. [Google Scholar] [CrossRef]
- Walsh, A.; Chen, S.; Wei, S.; Gong, X. Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4. Adv. Energy Mater. 2012, 2, 400–409. [Google Scholar] [CrossRef]
- Shibayama, N.; Zhang, Y.; Satake, T.; Sugiyama, M. Modelling of an Equivalent Circuit for Cu2ZnSnS4- and Cu2ZnSnSe4-Based Thin Film Solar Cells. RSC Adv. 2017, 7, 25347–25352. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Ma, F.; Sun, H.; Cong, J.; Privat, K.; Webster, R.F.; Cheong, S.; Yao, Y.; Chin, R.L.; et al. Unveiling Microscopic Carrier Loss Mechanisms in 12% Efficient Cu2ZnSnSe4 Solar Cells. Nat. Energy 2022, 7, 754–764. [Google Scholar] [CrossRef]
- Liu, W.; Li, H.; Qiao, B.; Zhao, S.; Xu, Z.; Song, D. Highly Efficient CIGS Solar Cells Based on a New CIGS Bandgap Gradient Design Characterized by Numerical Simulation. Sol. Energy 2022, 233, 337–344. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, L.; Hou, Y.; Nozariasbmarz, A.; Poudel, B.; Yoon, J.; Ye, T.; Yang, D.; Pogrebnyakov, A.V.; Gopalan, V.; et al. Overcoming Shockley-Queisser Limit Using Halide Perovskite Platform? Joule 2022, 6, 756–771. [Google Scholar] [CrossRef]
- Swami, S.K.; Kumar, A.; Dutta, V. Deposition of Kesterite Cu2ZnSnS4 (CZTS) Thin Films by Spin Coating Technique for Solar Cell Application. Energy Procedia 2013, 33, 198–202. [Google Scholar] [CrossRef]
- Ritchie, C.; Chesman, A.S.R.; Jasieniak, J.; Mulvaney, P. Aqueous Synthesis of Cu2ZnSnSe4 Nanocrystals. Chem. Mater. 2019, 31, 2138–2150. [Google Scholar] [CrossRef]
- Zaki, M.Y.; Sava, F.; Simandan, I.-D.; Buruiana, A.T.; Stavarache, I.; Bocirnea, A.E.; Mihai, C.; Velea, A.; Galca, A.-C. A Two-Step Magnetron Sputtering Approach for the Synthesis of Cu2ZnSnS4 Films from Cu2SnS3\ZnS Stacks. ACS Omega 2022, 7, 23800–23814. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.; Mohanraj, K.; Sivakumar, G. Thermally Evaporated CZTSe Thin Films for Solar Cell Application: Study on the Effect of Annealing Time. Part. Sci. Technol. 2020, 38, 1–6. [Google Scholar] [CrossRef]
- Elhmaidi, Z.O.; Pandiyan, R.; Abd-Lefdil, M.; El Khakani, M.A. Pulsed Laser Deposition of CZTS Thin Films, Their Thermal Annealing and Integration into n-Si/CZTS Photovoltaic Devices. In Proceedings of the 2016 International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 14–17 November 2016; 2016; pp. 130–135. [Google Scholar]
- Du, Y.-F.; Zhou, W.-H.; Zhou, Y.-L.; Li, P.-W.; Fan, J.-Q.; He, J.-J.; Wu, S.-X. Solvothermal Synthesis and Characterization of Quaternary Cu2ZnSnSe4 Particles. Mater. Sci. Semicond. Process. 2012, 15, 214–217. [Google Scholar] [CrossRef]
- Shyju, T.S.; Anandhi, S.; Suriakarthick, R.; Gopalakrishnan, R.; Kuppusami, P. Mechanosynthesis, Deposition and Characterization of CZTS and CZTSe Materials for Solar Cell Applications. J. Solid State Chem. 2015, 227, 165–177. [Google Scholar] [CrossRef]
- Fan, P.; Zhao, J.; Liang, G.; Gu, D.; Zheng, Z.; Zhang, D.; Cai, X.; Luo, J.; Ye, F. Effects of Annealing Treatment on the Properties of CZTSe Thin Films Deposited by RF-Magnetron Sputtering. J. Alloys Compd. 2015, 625, 171–174. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, U.P. Optimization of Annealing Temperature on the Formation CZTSe Absorber Layer. Appl. Phys. A 2023, 129, 414. [Google Scholar] [CrossRef]
- Guo, T.; Yu, Z.; Liu, L.; Zhao, Y.; Zhang, Y. Effect of Substrate and Selenization Temperature on the Properties of RF Sputtered CZTSe Layer. Vacuum 2017, 145, 217–224. [Google Scholar] [CrossRef]
- Temgoua, S.; Bodeux, R.; Naghavi, N.; Delbos, S. Effects of SnSe2 Secondary Phases on the Efficiency of Cu2ZnSn(Sx,Se1−x)4 Based Solar Cells. Thin Solid Film. 2015, 582, 215–219. [Google Scholar] [CrossRef]
- Tauc, J. Optical Properties and Electronic Structure of Amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Simya, O.K.; Geetha Priyadarshini, B.; Balachander, K.; Ashok, A.M. Formation of a Phase Pure Kesterite CZTSe Thin Films Using Multisource Hybrid Physical Vapour Deposition. Mater. Res. Express 2020, 7, 016419. [Google Scholar] [CrossRef]
- Yao, L.; Ao, J.; Jeng, M.-J.; Bi, J.; Gao, S.; He, Q.; Zhou, Z.; Sun, G.; Sun, Y.; Chang, L.-B.; et al. CZTSe Solar Cells Prepared by Electrodeposition of Cu/Sn/Zn Stack Layer Followed by Selenization at Low Se Pressure. Nanoscale Res. Lett. 2014, 9, 678. [Google Scholar] [CrossRef]
- Khalil, M.I.; Bernasconi, R.; Pedrazzetti, L.; Lucotti, A.; Donne, A.L.; Binetti, S.; Magagnin, L. Co-Electrodeposition of Metallic Precursors for the Fabrication of CZTSe Thin Films Solar Cells on Flexible Mo Foil. J. Electrochem. Soc. 2017, 164, D302–D306. [Google Scholar] [CrossRef]
- Prajapat, R.; Sharma, Y.C. Morphological Characterization and Microstructural Study of Cu2ZnSnSe4 Thin Films with Compositional Variation. Mater. Res. Express 2019, 6, 116459. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Wang, L.-C.; Liu, K.-T.; Syu, Y.-R.; Hsu, H.-R. A Comparative Investigation of Secondary Phases and MoSe2 in Cu2ZnSnSe4 Solar Cells: Effect of Zn/Sn Ratio. J. Alloys Compd. 2018, 743, 249–257. [Google Scholar] [CrossRef]
- Mwakyusa, L.P.; Neuwirth, M.; Kogler, W.; Schnabel, T.; Ahlswede, E.; Paetzold, U.W.; Richards, B.S.; Hetterich, M. CZTSe Solar Cells Prepared by Co-Evaporation of Multilayer Cu–Sn/Cu,Zn,Sn,Se/ZnSe/Cu,Zn,Sn,Se Stacks. Phys. Scr. 2019, 94, 105007. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 2, 154–160. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Zaki, M.Y.; Nouneh, K.; Touhami, M.E.; Matei, E.; Badica, P.; Burdusel, M.; Negrila, C.C.; Baibarac, M.; Pintilie, L.; Galca, A.C. Influence of Boric Acid Concentration on the Properties of Electrodeposited CZTS Absorber Layers. Phys. Scr. 2020, 95, 054001. [Google Scholar] [CrossRef]
- Littleford, R.E.; Graham, D.; Smith, W.E.; Khan, I. Raman Spectroscopy|Surface-Enhanced. In Encyclopedia of Analytical Science; Elsevier: Amsterdam, The Netherlands, 2005; pp. 110–118. [Google Scholar]
- Kodigala, S.R. The Role of Characterization Techniques in the Thin Film Analysis. In Thin Film Solar Cells from Earth Abundant Materials; Elsevier: Amsterdam, The Netherlands, 2014; pp. 67–140. [Google Scholar]
- Stanchik, A.V.; Tivanov, M.S.; Tyukhov, I.I.; Juskenas, R.; Korolik, O.V.; Gremenok, V.F.; Saad, A.M.; Naujokaitis, A. Temperature Dependence of Raman Scattering in the Cu2ZnSnSe4 Thin Films on a Ta Foil Substrate. Sol. Energy 2020, 201, 480–488. [Google Scholar] [CrossRef]
- Djemour, R.; Mousel, M.; Redinger, A.; Gütay, L.; Crossay, A.; Colombara, D.; Dale, P.J.; Siebentritt, S. Detecting ZnSe Secondary Phase in Cu2ZnSnSe4 by Room Temperature Photoluminescence. Appl. Phys. Lett. 2013, 102, 222108. [Google Scholar] [CrossRef]
- Nam, D.; Kim, J.; Lee, J.-U.; Nagaoka, A.; Yoshino, K.; Cha, W.; Kim, H.; Hwang, I.C.; Yoon, K.B.; Cheong, H. Polarized Raman Spectroscopy of Cu-Poor and Zn-Rich Single-Crystal Cu2ZnSnSe4. Appl. Phys. Lett. 2014, 105, 173903. [Google Scholar] [CrossRef]
- Vauche, L.; Risch, L.; Sánchez, Y.; Dimitrievska, M.; Pasquinelli, M.; Goislard De Monsabert, T.; Grand, P.; Jaime-Ferrer, S.; Saucedo, E. 8.2% Pure Selenide Kesterite Thin-film Solar Cells from Large-area Electrodeposited Precursors. Prog. Photovolt. 2016, 24, 38–51. [Google Scholar] [CrossRef]
- Tampo, H.; Kim, S.; Nagai, T.; Shibata, H.; Niki, S. Improving the Open Circuit Voltage through Surface Oxygen Plasma Treatment and 11.7% Efficient Cu2ZnSnSe4 Solar Cell. ACS Appl. Mater. Interfaces 2019, 11, 13319–13325. [Google Scholar] [CrossRef]
- Wang, Z.; Jones, K.M.; Norman, A.G.; Moseley, J.; Repins, I.L.; Noufi, R.; Yan., Y.; Mowafak, M.A.J. Electron microscopy study of individual grain boundaries in Cu2ZnSnSe4 thin films. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013; pp. 1681–1684. [Google Scholar] [CrossRef]
- Yao, L.; Ao, J.; Jeng, M.-J.; Bi, J.; Gao, S.; Sun, G.; He, Q.; Zhou, Z.; Zhang, Y.; Sun, Y.; et al. Reactive Mechanism of Cu2ZnSnSe4 Thin Films Prepared by Reactive Annealing of the Cu/Zn Metal Layer in a SnSex + Se Atmosphere. Crystals 2018, 9, 10. [Google Scholar] [CrossRef]
- Stanchik, A.V.; Gremenok, V.F.; Juskenas, R.; Tyukhov, I.I.; Tivanov, M.S.; Fettkenhauer, C.; Shvartsman, V.V.; Giraitis, R.; Hagemann, U.; Lupascu, D.C. Effects of Selenization Time and Temperature on the Growth of Cu2ZnSnSe4 Thin Films on a Metal Substrate for Flexible Solar Cells. Sol. Energy 2019, 178, 142–149. [Google Scholar] [CrossRef]
- Henry, J.; Mohanraj, K.; Sivakumar, G. Electrical and Optical Properties of CZTS Thin Films Prepared by SILAR Method. J. Asian Ceram. Soc. 2016, 4, 81–84. [Google Scholar] [CrossRef]
- Ingle, J.D.J.; Crouch, S.R. Analytical Chemistry; Prentice Hall: Hoboken, NJ, USA, 1988. [Google Scholar]
- Ahn, S.; Jung, S.; Gwak, J.; Cho, A.; Shin, K.; Yoon, K.; Park, D.; Cheong, H.; Yun, J.H. Determination of Band Gap Energy (Eg) of Cu2ZnSnSe4 Thin Films: On the Discrepancies of Reported Band Gap Values. Appl. Phys. Lett. 2010, 97, 021905. [Google Scholar] [CrossRef]
- Altosaar, M.; Raudoja, J.; Timmo, K.; Danilson, M.; Grossberg, M.; Krustok, J.; Mellikov, E. Cu2Zn1-xCdxSn(Se1-ySy)4 Solid Solutions as Absorber Materials for Solar Cells. phys. stat. sol. (a) 2008, 205, 167–170. [Google Scholar] [CrossRef]
- Zoppi, G.; Forbes, I.; Miles, R.W.; Dale, P.J.; Scragg, J.J.; Peter, L.M. Cu2ZnSnSe4 Thin Film Solar Cells Produced by Selenisation of Magnetron Sputtered Precursors. Prog. Photovolt. 2009, 17, 315–319. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Cong, J.; Mai, Y.; Su, Z.; Liang, G.; Wang, A.; He, M.; Yuan, X.; Sun, H.; et al. Large-Grain Spanning Monolayer Cu2ZnSnSe4 Thin-Film Solar Cells Grown from Metal Precursor. Small 2022, 18, 2105044. [Google Scholar] [CrossRef] [PubMed]
- Tsega, M.; Kuo, D.-H. The Performance of the Donor and Acceptor Doping in the Cu-Rich Cu2ZnSnSe4 Bulks with Different Zn/Sn Ratios. Solid State Commun. 2013, 164, 42–46. [Google Scholar] [CrossRef]
- Lai, F.-I.; Hsieh, D.-H.; Yang, J.-F.; Hsu, Y.-C.; Kuo, S.-Y. Investigation into Complex Defect Properties of Near-Stoichiometric Cu2ZnSnSe4 Thin Film. Sol. Energy 2023, 251, 240–248. [Google Scholar] [CrossRef]
- Muslih, E.Y.; Bin Rafiq, K.S.; Hossain, M.I.; Shahiduzzaman, M.; Rashid, M.J.; Rahman, T.; Munir, B.; Althubeiti, K.; Alkhammash, H.I.; Abdullah, H.; et al. Growth and Reaction Mechanism of Solution-Processed Cu2ZnSnSe4 Thin Films for Realising Efficient Photovoltaic Applications. J. Alloys Compd. 2022, 900, 163457. [Google Scholar] [CrossRef]
- Colombara, D.; Delsante, S.; Borzone, G.; Mitchels, J.M.; Molloy, K.C.; Thomas, L.H.; Mendis, B.G.; Cummings, C.Y.; Marken, F.; Peter, L.M. Crystal Growth of Cu2ZnSnS4 Solar Cell Absorber by Chemical Vapor Transport with I2. J. Cryst. Growth 2013, 364, 101–110. [Google Scholar] [CrossRef]
Parameters | Z1 | Z2 | Z3 | Z4 | ||||
---|---|---|---|---|---|---|---|---|
Cu | Sn | Cu2Se | SnSe2 | Cu | SnSe2 | Cu2Se | Sn | |
Gun power (W) | 24 | 14 | 16 | 16 | 14 | 16 | 17 | 15 |
Thickness (nm) | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 |
Deposition rate (Å/s) | 0.5 | 0.5 | 0.5 | 0.26 | 0.5 | 0.26 | 0.5 | 0.26 |
Elemental Concentration (%) | CZTSe/Mo | CZTSe/SLG | ||||||
---|---|---|---|---|---|---|---|---|
Cu | Zn | Sn | Se | Cu | Zn | Sn | Se | |
Z1 | 44.72 | 22.46 | 3.09 | 29.73 | 40.39 | 22.26 | 5.96 | 31.39 |
Z2 | 21.65 | 32.84 | 5.99 | 39.52 | 22.48 | 32.08 | 11.45 | 33.99 |
Z3 | 36.47 | 22.16 | 6.36 | 35.01 | 31.19 | 26.58 | 10.26 | 31.97 |
Z4 | 39.81 | 25.79 | 3.75 | 30.65 | 38.14 | 23.95 | 6.94 | 30.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catana, D.-S.; Zaki, M.Y.; Simandan, I.-D.; Buruiana, A.-T.; Sava, F.; Velea, A. Understanding the Effects of Post-Deposition Sequential Annealing on the Physical and Chemical Properties of Cu2ZnSnSe4 Thin Films. Surfaces 2023, 6, 466-479. https://doi.org/10.3390/surfaces6040031
Catana D-S, Zaki MY, Simandan I-D, Buruiana A-T, Sava F, Velea A. Understanding the Effects of Post-Deposition Sequential Annealing on the Physical and Chemical Properties of Cu2ZnSnSe4 Thin Films. Surfaces. 2023; 6(4):466-479. https://doi.org/10.3390/surfaces6040031
Chicago/Turabian StyleCatana, Diana-Stefania, Mohamed Yassine Zaki, Iosif-Daniel Simandan, Angel-Theodor Buruiana, Florinel Sava, and Alin Velea. 2023. "Understanding the Effects of Post-Deposition Sequential Annealing on the Physical and Chemical Properties of Cu2ZnSnSe4 Thin Films" Surfaces 6, no. 4: 466-479. https://doi.org/10.3390/surfaces6040031
APA StyleCatana, D. -S., Zaki, M. Y., Simandan, I. -D., Buruiana, A. -T., Sava, F., & Velea, A. (2023). Understanding the Effects of Post-Deposition Sequential Annealing on the Physical and Chemical Properties of Cu2ZnSnSe4 Thin Films. Surfaces, 6(4), 466-479. https://doi.org/10.3390/surfaces6040031