Synthesis of WS2 Ultrathin Films by Magnetron Sputtering Followed by Sulfurization in a Confined Space
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Precursor Thin Layers of W and WS2
2.2. Sulfurization Process for prW and prWS2 Layers
2.3. Characterization of the Precursor and Sulfurized Films
3. Results
3.1. Precursor Thin Films
3.1.1. Thickness Determination of prW and prWS2 Precursor Thin Films by XRR
3.1.2. Structural Determination of prW and prWS2 Precursor Thin Films through XRD
3.1.3. Micro-Raman Spectroscopy Analysis of prW and prWS2 Precursor Thin Films
3.1.4. Investigation of the prW and prWS2 Precursor Thin Films by SEM
3.2. Sulfurized Thin Films
3.2.1. XRR Analysis of Sulfurized prW and prWS2 Thin Films
3.2.2. Determining the Structure of Sulfurized prW and prWS2 Thin Films by XRD
3.2.3. Determining the Structure of Sulfurized prW and prWS2 Thin Films by Micro-Raman Spectroscopy
3.2.4. Investigation of Sulfurized prW and prWS2 Thin Films Using SEM and EDX
3.2.5. Investigation of Sulfurized prW and prWS2 Thin Layers Using AFM
3.2.6. Investigating the Sulfurized prW and prWS2 Thin Films by X-ray Photoelectron Spectroscopy (XPS)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeng, H.; Wen, Y.; Yin, L.; Cheng, R.; Wang, H.; Liu, C.; He, J. Recent Developments in CVD Growth and Applications of 2D Transition Metal Dichalcogenides. Front. Phys. 2023, 18, 53603. [Google Scholar] [CrossRef]
- Buruiana, A.T.; Bocirnea, A.E.; Kuncser, A.C.; Tite, T.; Matei, E.; Mihai, C.; Zawadzka, N.; Olkowska-Pucko, K.; Kipczak, Ł.; Babiński, A.; et al. Layered SnSe Nanoflakes with Anharmonic Phonon Properties and Memristive Characteristics. Appl. Surf. Sci. 2022, 599, 153983. [Google Scholar] [CrossRef]
- Buruiana, A.-T.; Sava, F.; Iacob, N.; Matei, E.; Bocirnea, A.E.; Onea, M.; Galca, A.-C.; Mihai, C.; Velea, A.; Kuncser, V. Micrometer Sized Hexagonal Chromium Selenide Flakes for Cryogenic Temperature Sensors. Sensors 2021, 21, 8084. [Google Scholar] [CrossRef] [PubMed]
- Mihai, C.; Sava, F.; Galca, A.C.; Velea, A. Low Power Non-Volatile Memory Switching in Monolayer-Rich 2D WS2 and MoS2 Devices. AIP Adv. 2020, 10, 025102. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Feng, Y.; Wang, F.; Yang, Z.; Wang, J. Two Dimensional Hexagonal Boron Nitride (2D-hBN): Synthesis, Properties and Applications. J. Mater. Chem. C 2017, 5, 11992–12022. [Google Scholar] [CrossRef]
- Sarkar, A.S.; Stratakis, E. Recent Advances in 2D Metal Monochalcogenides. Adv. Sci. 2020, 7, 2001655. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Dai, J.; Li, M.; Zeng, X.C. Group IVB Transition Metal Trichalcogenides: A New Class of 2D Layered Materials beyond Graphene. WIREs Comput. Mol. Sci. 2016, 6, 211–222. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Basu, S.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Graphitic Carbon Nitride (g–C3N4)–Based Metal-Free Photocatalysts for Water Splitting: A Review. Carbon 2019, 149, 693–721. [Google Scholar] [CrossRef]
- Molina-Sánchez, A.; Wirtz, L. Phonons in Single-Layer and Few-Layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413. [Google Scholar] [CrossRef]
- Roldán, R.; Silva-Guillén, J.A.; López-Sancho, M.P.; Guinea, F.; Cappelluti, E.; Ordejón, P. Electronic Properties of Single-layer and Multilayer Transition Metal Dichalcogenides MX2 (M = Mo, W and X = S, Se). Ann. Phys. 2014, 526, 347–357. [Google Scholar] [CrossRef]
- Gusakova, J.; Wang, X.; Shiau, L.L.; Krivosheeva, A.; Shaposhnikov, V.; Borisenko, V.; Gusakov, V.; Tay, B.K. Electronic Properties of Bulk and Monolayer TMDs: Theoretical Study Within DFT Framework (GVJ-2e Method). Phys. Status Solidi (A) 2017, 214, 1700218. [Google Scholar] [CrossRef]
- Ballif, C.; Regula, M.; Schmid, P.E.; Remškar, M.; Sanjinés, R.; Lévy, F. Preparation and Characterization of Highly Oriented, Photoconducting WS2 Thin Films. Appl. Phys. A 1996, 62, 543–546. [Google Scholar] [CrossRef]
- Li, Y.; Kuang, G.; Jiao, Z.; Yao, L.; Duan, R. Recent Progress on the Mechanical Exfoliation of 2D Transition Metal Dichalcogenides. Mater. Res. Express 2022, 9, 122001. [Google Scholar] [CrossRef]
- Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D.C.B.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.B.; Eda, G.; et al. Enhanced Catalytic Activity in Strained Chemically Exfoliated WS2 Nanosheets for Hydrogen Evolution. Nat. Mater. 2013, 12, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.; Kim, H.-S.; Han, J.-H.; Kwon, S.J.; Cho, E.S. A Study on the Formation of 2-Dimensional Tungsten Disulfide Thin Films on Sapphire Substrate by Sputtering and High Temperature Rapid Thermal Processing. J. Nanosci. Nanotechnol. 2018, 18, 6257–6264. [Google Scholar] [CrossRef]
- Wu, C.-R.; Chang, X.-R.; Chu, T.-W.; Chen, H.-A.; Wu, C.-H.; Lin, S.-Y. Establishment of 2D Crystal Heterostructures by Sulfurization of Sequential Transition Metal Depositions: Preparation, Characterization, and Selective Growth. Nano Lett. 2016, 16, 7093–7097. [Google Scholar] [CrossRef]
- Zeng, L.; Tao, L.; Tang, C.; Zhou, B.; Long, H.; Chai, Y.; Lau, S.P.; Tsang, Y.H. High-Responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering. Sci. Rep. 2016, 6, 20343. [Google Scholar] [CrossRef]
- Wu, C.-R.; Chang, X.-R.; Wu, C.-H.; Lin, S.-Y. The Growth Mechanism of Transition Metal Dichalcogenides by Using Sulfurization of Pre-Deposited Transition Metals and the 2D Crystal Hetero-Structure Establishment. Sci. Rep. 2017, 7, 42146. [Google Scholar] [CrossRef]
- Jung, Y.; Shen, J.; Liu, Y.; Woods, J.M.; Sun, Y.; Cha, J.J. Metal Seed Layer Thickness-Induced Transition From Vertical to Horizontal Growth of MoS2 and WS2. Nano Lett. 2014, 14, 6842–6849. [Google Scholar] [CrossRef] [PubMed]
- Mihai, C.; Sava, F.; Simandan, I.D.; Galca, A.C.; Burducea, I.; Becherescu, N.; Velea, A. Structural and Optical Properties of Amorphous Si–Ge–Te Thin Films Prepared by Combinatorial Sputtering. Sci. Rep. 2021, 11, 11755. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ghorannevis, Z.; Amara, K.K.; Pang, J.R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P.H.; Eda, G. Lattice Dynamics in Mono- and Few-Layer Sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677. [Google Scholar] [CrossRef] [PubMed]
- Berkdemir, A.; Gutiérrez, H.R.; Botello-Méndez, A.R.; Perea-López, N.; Elías, A.L.; Chia, C.-I.; Wang, B.; Crespi, V.H.; López-Urías, F.; Charlier, J.-C.; et al. Identification of Individual and Few Layers of WS2 Using Raman Spectroscopy. Sci. Rep. 2013, 3, 1755. [Google Scholar] [CrossRef]
- Sourisseau, C.; Cruege, F.; Fouassier, M.; Alba, M. Second-Order Raman Effects, Inelastic Neutron Scattering and Lattice Dynamics in 2H-WS2. Chem. Phys. 1991, 150, 281–293. [Google Scholar] [CrossRef]
λ (nm) | Phonons | Monolayer (cm−1) | Bilayer (cm−1) | Trilayer (cm−1) | Bulk (cm−1) |
---|---|---|---|---|---|
647 | A1g(Γ) | 417.2 | 418.7 | 419.2 | 420.5 |
E12g(Γ) | 355.3 | 354.2 | 354 | 354.7 | |
2LA(M) | 350.4 | 349.5 | 349.5 | 351.1 | |
I(E12g)/I(A1g) | 0.5 | 0.8 | 0.8 | 0.4 |
Sample | Composition |
---|---|
Sulfurized prW | W76S24 |
Sulfurized prWS2 | W93S7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sava, F.; Simandan, I.-D.; Buruiana, A.-T.; Bocirnea, A.E.; El Khouja, O.; Tite, T.; Zaki, M.Y.; Mihai, C.; Velea, A. Synthesis of WS2 Ultrathin Films by Magnetron Sputtering Followed by Sulfurization in a Confined Space. Surfaces 2024, 7, 108-119. https://doi.org/10.3390/surfaces7010008
Sava F, Simandan I-D, Buruiana A-T, Bocirnea AE, El Khouja O, Tite T, Zaki MY, Mihai C, Velea A. Synthesis of WS2 Ultrathin Films by Magnetron Sputtering Followed by Sulfurization in a Confined Space. Surfaces. 2024; 7(1):108-119. https://doi.org/10.3390/surfaces7010008
Chicago/Turabian StyleSava, Florinel, Iosif-Daniel Simandan, Angel-Theodor Buruiana, Amelia Elena Bocirnea, Outman El Khouja, Teddy Tite, Mohamed Yasssine Zaki, Claudia Mihai, and Alin Velea. 2024. "Synthesis of WS2 Ultrathin Films by Magnetron Sputtering Followed by Sulfurization in a Confined Space" Surfaces 7, no. 1: 108-119. https://doi.org/10.3390/surfaces7010008
APA StyleSava, F., Simandan, I. -D., Buruiana, A. -T., Bocirnea, A. E., El Khouja, O., Tite, T., Zaki, M. Y., Mihai, C., & Velea, A. (2024). Synthesis of WS2 Ultrathin Films by Magnetron Sputtering Followed by Sulfurization in a Confined Space. Surfaces, 7(1), 108-119. https://doi.org/10.3390/surfaces7010008