Fluorine Free Surface Modification of Microfibrillated Cellulose-Clay Composite Films: Effect of Hydrophobicity on Gas Barrier Performance
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Materials and Processes
2.2. Characterization Methods
3. Results and Discussion
3.1. Structure and Morphology Analysis of MFC-Clay Composite Films
3.2. Water Contact Angle
3.3. Mechanical Analysis
3.4. Oxygen and Water Vapor Transmission Rates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verghese, K.; Lewis, H.; Lockrey, S.; Williams, H. Packaging’s Role in Minimizing Food Loss and Waste across the Supply Chain. Packag. Technol. Sci. 2015, 28, 603–620. [Google Scholar] [CrossRef]
- Helanto, K.E.; Matikainen, L.; Talja, R.; Rojas, O.J. Bio-Based Polymers for Sustainable Packaging and Biobarriers: A Critical Review. BioResources 2019, 14, 4902–4951. [Google Scholar] [CrossRef]
- Mikkonen, K.S.; Tenkanen, M. Sustainable Food-Packaging Materials Based on Future Biorefinery Products: Xylans and Mannans. Trends Food Sci. Technol. 2012, 28, 90–102. [Google Scholar] [CrossRef]
- Cazon, P.; Vázquez, M. Bacterial Cellulose as a Biodegradable Food Packaging Material: A Review. Food Hydrocoll. 2021, 113, 106530. [Google Scholar] [CrossRef]
- Abe, M.M.; Martins, J.R.; Sanvezzo, P.B.; Macedo, J.V.; Branciforti, M.C.; Halley, P.; Botaro, V.R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers 2021, 13, 2484. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Dufresne, A. Nanocellulose in Biomedicine: Current Status and Future Prospect. Eur. Polym. J. 2014, 59, 302–325. [Google Scholar] [CrossRef]
- Aulin, C.; Gällstedt, M.; Lindström, T. Oxygen and Oil Barrier Properties of Microfibrillated Cellulose Films and Coatings. Cellulose 2010, 17, 559–574. [Google Scholar] [CrossRef]
- Khazraji, A.C.; Robert, S. Interaction Effects between Cellulose and Water in Nanocrystalline and Amorphous Regions: A Novel Approach Using Molecular Modeling. J. Nanomater. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Etale, A.; Onyianta, A.J.; Turner, S.R.; Eichhorn, S.J. Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chem. Rev. 2023, 123, 2016–2048. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, X.; Nair, S.S.; Ragauskas, A.; Zhu, J.; Deng, Y. Thermally Enhanced High Performance Cellulose Nano Fibril Barrier Membranes. RSC Adv. 2014, 4, 45136–45142. [Google Scholar] [CrossRef]
- Bardet, R.; Reverdy, C.; Belgacem, N.; Leirset, I.; Syverud, K.; Bardet, M.; Bras, J. Substitution of Nanoclay in High Gas Barrier Films of Cellulose Nanofibrils with Cellulose Nanocrystals and Thermal Treatment. Cellulose 2015, 22, 1227–1241. [Google Scholar] [CrossRef]
- Herrera, M.A.; Mathew, A.P.; Oksman, K. Barrier and Mechanical Properties of Plasticized and Cross-Linked Nanocellulose Coatings for Paper Packaging Applications. Cellulose 2017, 24, 3969–3980. [Google Scholar] [CrossRef]
- Magalhães, S.; Fernandes, C.; Pedrosa, J.F.; Alves, L.; Medronho, B.; Ferreira, P.J.; Rasteiro, M. da G. Eco-Friendly Methods for Extraction and Modification of Cellulose: An Overview. Polymers 2023, 15, 3138. [Google Scholar] [CrossRef] [PubMed]
- Saedi, S.; Garcia, C.V.; Kim, J.T.; Shin, G.H. Physical and Chemical Modifications of Cellulose Fibers for Food Packaging Applications. Cellulose 2021, 28, 8877–8897. [Google Scholar]
- Mohan, T.; Spirk, S.; Kargl, R.; Doliška, A.; Vesel, A.; Salzmann, I.; Resel, R.; Ribitsch, V.; Stana-Kleinschek, K. Exploring the Rearrangement of Amorphous Cellulose Model Thin Films upon Heat Treatment. Soft Matter 2012, 8, 9807–9815. [Google Scholar] [CrossRef]
- Kontturi, K.S.; Kontturi, E.; Laine, J. Specific Water Uptake of Thin Films from Nanofibrillar Cellulose. J. Mater. Chem. A 2013, 1, 13655–13663. [Google Scholar] [CrossRef]
- Medina-Sandoval, C.F.; Valencia-Dávila, J.A.; Combariza, M.Y.; Blanco-Tirado, C. Separation of Asphaltene-Stabilized Water in Oil Emulsions and Immiscible Oil/Water Mixtures Using a Hydrophobic Cellulosic Membrane. Fuel 2018, 231, 297–306. [Google Scholar] [CrossRef]
- Xie, A.; Cui, J.; Chen, Y.; Lang, J.; Li, C.; Yan, Y.; Dai, J. One-Step Facile Fabrication of Sustainable Cellulose Membrane with Superhydrophobicity via a Sol-Gel Strategy for Efficient Oil/Water Separation. Surf. Coatings Technol. 2019, 361, 19–26. [Google Scholar] [CrossRef]
- Guo, N.; Chen, Y.; Rao, Q.; Yin, Y.; Wang, C. Fabrication of Durable Hydrophobic Cellulose Surface from Silane-functionalized Silica Hydrosol via Electrochemically Assisted Deposition. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Rodionova, G.; Lenes, M.; Eriksen, Ø.; Gregersen, Ø. Surface Chemical Modification of Microfibrillated Cellulose: Improvement of Barrier Properties for Packaging Applications. Cellulose 2011, 18, 127–134. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Xie, Y.; Zhang, K. Functional Nanomaterials through Esterification of Cellulose: A Review of Chemistry and Application. Cellulose 2018, 25, 3703–3731. [Google Scholar] [CrossRef]
- Gómez, F.N.; Combariza, M.Y.; Blanco-Tirado, C. Facile Cellulose Nanofibrils Amidation Using a ‘One-Pot’Approach. Cellulose 2017, 24, 717–730. [Google Scholar] [CrossRef]
- Habibi, Y.; Goffin, A.-L.; Schiltz, N.; Duquesne, E.; Dubois, P.; Dufresne, A. Bionanocomposites Based on Poly (ε-Caprolactone)-Grafted Cellulose Nanocrystals by Ring-Opening Polymerization. J. Mater. Chem. 2008, 18, 5002–5010. [Google Scholar] [CrossRef]
- Galland, S.; Leterrier, Y.; Nardi, T.; Plummer, C.J.G.; Månson, J.A.E.; Berglund, L.A. UV-cured Cellulose Nanofiber Composites with Moisture Durable Oxygen Barrier Properties. J. Appl. Polym. Sci. 2014, 131, 40604. [Google Scholar] [CrossRef]
- Xu, L.; Teng, J.; Li, L.; Huang, H.-D.; Xu, J.-Z.; Li, Y.; Ren, P.-G.; Zhong, G.-J.; Li, Z.-M. Hydrophobic Graphene Oxide as a Promising Barrier of Water Vapor for Regenerated Cellulose Nanocomposite Films. ACS Omega 2019, 4, 509–517. [Google Scholar] [CrossRef]
- Singha, S.; Hedenqvist, M.S. A Review on Barrier Properties of Poly (Lactic Acid)/Clay Nanocomposites. Polymers 2020, 12, 1095. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Walther, A.; Ikkala, O.; Belova, L.; Berglund, L.A. Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions. Biomacromolecules 2011, 12, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Nuruddin, M.; Chowdhury, R.A.; Szeto, R.; Howarter, J.A.; Erk, K.A.; Szczepanski, C.R.; Youngblood, J.P. Structure–Property Relationship of Cellulose Nanocrystal–Polyvinyl Alcohol Thin Films for High Barrier Coating Applications. ACS Appl. Mater. Interfaces 2021, 13, 12472–12482. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yuan, L.; Tian, H.; Zhang, L.; Lu, A. Strong, Transparent Cellulose Film as Gas Barrier Constructed via Water Evaporation Induced Dense Packing. J. Membr. Sci. 2019, 585, 99–108. [Google Scholar] [CrossRef]
- Aulin, C.; Ström, G. Multilayered Alkyd Resin/Nanocellulose Coatings for Use in Renewable Packaging Solutions with a High Level of Moisture Resistance. Ind. Eng. Chem. Res. 2013, 52, 2582–2589. [Google Scholar] [CrossRef]
- Dalle Vacche, S.; Molina-Gutiérrez, S.; Ladmiral, V.; Caillol, S.; Bongiovanni, R.; Lacroix-Desmazes, P. Photochemical [2+ 2] Cycloaddition of Biobased Latexes for Composites with Microfibrillated Cellulose. Chem. Eng. Trans. 2022, 92, 277–282. [Google Scholar]
- He, H.; Tao, Q.; Zhu, J.; Yuan, P.; Shen, W.; Yang, S. Silylation of Clay Mineral Surfaces. Appl. Clay Sci. 2013, 71, 15–20. [Google Scholar] [CrossRef]
- Penaloza Jr, D.P. Modified Clay for the Synthesis of Clay-Based Nanocomposites. Épa. J. Silic. Based Compos. Mater. 2019, 71. [Google Scholar] [CrossRef]
- Poothanari, M.A.; Michaud, V.; Damjanovic, D.; Leterrier, Y. Surface Modified Microfibrillated Cellulose-poly (Vinylidene Fluoride) Composites: Β-phase Formation, Viscoelastic and Dielectric Performance. Polym. Int. 2021, 70, 1316–1328. [Google Scholar] [CrossRef]
- Mohd, N.H.; Ismail, N.F.H.; Zahari, J.I.; Fathilah, W.; Kargarzadeh, H.; Ramli, S.; Ahmad, I.; Yarmo, M.A.; Othaman, R. Effect of Aminosilane Modification on Nanocrystalline Cellulose Properties. J. Nanomater. 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Korkut, S.; Budakci, M. The Effects of High-Temperature Heat-Treatment on Physical Properties and Surface Roughness of Rowan (Sorbus Aucuparia L.) Wood. Wood Res. 2010, 55, 67–78. [Google Scholar]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Kim, H.C.; Kim, H.Y.; Chung, Y.S.; Park, W.H.; Youk, J.H. Crystalline Structure Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide by Means of X-Ray Diffraction and FTIR Spectroscopy. Carbohydr. Res. 2005, 340, 2376–2391. [Google Scholar] [CrossRef] [PubMed]
- Abral, H.; Ariksa, J.; Mahardika, M.; Handayani, D.; Aminah, I.; Sandrawati, N.; Sugiarti, E.; Muslimin, A.N.; Rosanti, S.D. Effect of Heat Treatment on Thermal Resistance, Transparency and Antimicrobial Activity of Sonicated Ginger Cellulose Film. Carbohydr. Polym. 2020, 240, 116287. [Google Scholar] [CrossRef]
- Jung, B.N.; Jung, H.W.; Kang, D.; Kim, G.H.; Shim, J.K. Synergistic Effect of Cellulose Nanofiber and Nanoclay as Distributed Phase in a Polypropylene Based Nanocomposite System. Polymers 2020, 12, 2399. [Google Scholar] [CrossRef]
- Li, S.-M.; Jia, N.; Zhu, J.-F.; Ma, M.-G.; Sun, R.-C. Synthesis of Cellulose–Calcium Silicate Nanocomposites in Ethanol/Water Mixed Solvents and Their Characterization. Carbohydr. Polym. 2010, 80, 270–275. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, X.; Xie, W.; Chen, D.; Li, G. The Adsorptive Ability of Ti-Pillared Montmorillonite for Lead (II) Cation. In Proceedings of the 2013 International Conference on Materials for Renewable Energy and Environment, Chengdu, China, 19–21 August 2013; Volume 2, pp. 577–580. [Google Scholar]
- Zhirong, L.; Uddin, M.A.; Zhanxue, S. FT-IR and XRD Analysis of Natural Na-Bentonite and Cu (II)-Loaded Na-Bentonite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- French, A.D. Idealized Powder Diffraction Patterns for Cellulose Polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Wu, C.-N.; Saito, T.; Fujisawa, S.; Fukuzumi, H.; Isogai, A. Ultrastrong and High Gas-Barrier Nanocellulose/Clay-Layered Composites. Biomacromolecules 2012, 13, 1927–1932. [Google Scholar] [CrossRef] [PubMed]
- Segal, L.; Creely, J.J.; Martin Jr, A.; Conrad, C. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Del Mundo, J.T.; Rongpipi, S.; Yang, H.; Ye, D.; Kiemle, S.N.; Moffitt, S.L.; Troxel, C.L.; Toney, M.F.; Zhu, C.; Kubicki, J.D. Grazing-Incidence Diffraction Reveals Cellulose and Pectin Organization in Hydrated Plant Primary Cell Wall. Sci. Rep. 2023, 13, 5421. [Google Scholar] [CrossRef] [PubMed]
- Cassie, A.B.D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Parvate, S.; Dixit, P.; Chattopadhyay, S. Superhydrophobic Surfaces: Insights from Theory and Experiment. J. Phys. Chem. B 2020, 124, 1323–1360. [Google Scholar] [CrossRef] [PubMed]
- Gabr, M.H.; Phong, N.T.; Abdelkareem, M.A.; Okubo, K.; Uzawa, K.; Kimpara, I.; Fujii, T. Mechanical, Thermal, and Moisture Absorption Properties of Nano-Clay Reinforced Nano-Cellulose Biocomposites. Cellulose 2013, 20, 819–826. [Google Scholar] [CrossRef]
- Lu, J.; Wang, T.; Drzal, L.T. Preparation and Properties of Microfibrillated Cellulose Polyvinyl Alcohol Composite Materials. Compos. Part A Appl. Sci. Manuf. 2008, 39, 738–746. [Google Scholar] [CrossRef]
- Ishimura, D.; Morimoto, Y.; Saito, H. Influences of Chemical Modifications on the Mechanical Strength of Cellulose Beads. Cellulose 1998, 5, 135–151. [Google Scholar] [CrossRef]
- Choudalakis, G.; Gotsis, A.D. Permeability of Polymer/Clay Nanocomposites: A Review. Eur. Polym. J. 2009, 45, 967–984. [Google Scholar] [CrossRef]
- Chen, L.; He, X.; Liu, H.; Qian, L.; Kim, S.H. Water Adsorption on Hydrophilic and Hydrophobic Surfaces of Silicon. J. Phys. Chem. C 2018, 122, 11385–11391. [Google Scholar] [CrossRef]
- Wang, C.; Lai, P.-C.; Syu, S.H.; Leu, J. Effects of CF4 Plasma Treatment on the Moisture Uptake, Diffusion, and WVTR of Poly (Ethylene Terephthalate) Flexible Films. Surf. Coat. Technol. 2011, 206, 318–324. [Google Scholar] [CrossRef]
- Zhou, S.-Y.; Yang, B.; Li, Y.; Gao, X.-R.; Ji, X.; Zhong, G.-J.; Li, Z.-M. Realization of Ultra-High Barrier to Water Vapor by 3D-Interconnection of Super-Hydrophobic Graphene Layers in Polylactide Films. J. Mater. Chem. A 2017, 5, 14377–14386. [Google Scholar] [CrossRef]
- Jiang, X.; Li, Q.; Li, X.; Meng, Y.; Ling, Z.; Ji, Z.; Chen, F. Preparation and Characterization of Degradable Cellulose− Based Paper with Superhydrophobic, Antibacterial, and Barrier Properties for Food Packaging. Int. J. Mol. Sci. 2022, 23, 11158. [Google Scholar] [CrossRef]
- O’Keeffe, O.; Wang, P.-X.; Hamad, W.Y.; MacLachlan, M.J. Boundary Geometry Effects on the Coalescence of Liquid Crystalline Tactoids and Formation of Topological Defects. J. Phys. Chem. Lett. 2019, 10, 278–282. [Google Scholar] [CrossRef]
Film Material | CI [−] | Crystallite Size D [nm] | d-Spacing d001 [nm] |
---|---|---|---|
MFC | 0.77 | 3.83 | - |
Heat-treated MFC | 0.79 | 3.95 | - |
Clay | - | - | 1.16 |
MFC/Clay | 0.76 | 3.85 | 1.32 |
Heat-treated MFC/Clay | 0.78 | 3.98 | 1.30 |
Film Material | RMS Roughness [nm] | WCA [°] |
---|---|---|
MFC | 24.7 | 39.1 ± 2.5 |
Heat-treated MFC | 35.2 | 83.5 ± 2.9 |
MFC/Clay | 25.7 | 50.7 ± 1.4 |
Heat-treated MFC/Clay | 31.1 | 73.3 ± 2.5 |
Silylated MFC | 25.9 | 125.1 ± 2.2 |
Heat treated and silylated MFC | 35.4 | 133 ± 1.3 |
Silylated MFC/Clay | 36.5 | 138.8 ± 2.3 |
Heat-treated and silylated MFC/Clay | 43.7 | 146.5 ± 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poothanari, M.A.; Leterrier, Y. Fluorine Free Surface Modification of Microfibrillated Cellulose-Clay Composite Films: Effect of Hydrophobicity on Gas Barrier Performance. Surfaces 2024, 7, 283-295. https://doi.org/10.3390/surfaces7020019
Poothanari MA, Leterrier Y. Fluorine Free Surface Modification of Microfibrillated Cellulose-Clay Composite Films: Effect of Hydrophobicity on Gas Barrier Performance. Surfaces. 2024; 7(2):283-295. https://doi.org/10.3390/surfaces7020019
Chicago/Turabian StylePoothanari, Mohammed Arif, and Yves Leterrier. 2024. "Fluorine Free Surface Modification of Microfibrillated Cellulose-Clay Composite Films: Effect of Hydrophobicity on Gas Barrier Performance" Surfaces 7, no. 2: 283-295. https://doi.org/10.3390/surfaces7020019
APA StylePoothanari, M. A., & Leterrier, Y. (2024). Fluorine Free Surface Modification of Microfibrillated Cellulose-Clay Composite Films: Effect of Hydrophobicity on Gas Barrier Performance. Surfaces, 7(2), 283-295. https://doi.org/10.3390/surfaces7020019