Size-Dependence of the Electrochemical Activity of Platinum Particles in the 1 to 2 Nanometer Range
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ptdnm/C Catalysts
2.2. Electrochemical Analyses
3. Results and Discussion
3.1. Characterization of Catalysts
3.2. CV Measurements
3.3. ORR Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- St. John, C.S.; Dutta, I.; Angelopoulos, A.P. Synthesis and Characterization of Electrocatalytically Active Platinum Atom Clusters and Monodisperse Single Crystals. J. Phys. Chem. C 2010, 114, 1315–1325. [Google Scholar] [CrossRef]
- Siburian, R.; Kondo, T.; Nakamura, J. Size Control to a Sub-Nanometer Scale in Platinum Catalysts on Graphene. J. Phys. Chem. C 2013, 117, 3635–3645. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, Z.; Xiao, K.; Xi, J. Electrocatalytic Activity of Pt Subnano/Nanoclusters Stabilized by Pristine Graphene Nanosheets. Phys. Chem. Chem. Phys. 2014, 16, 21609–21614. [Google Scholar] [CrossRef]
- Gao, J.J.; Du, P.; Zhang, Q.H.; Shen, X.; Chiang, F.-K.; Wen, Y.R.; Lin, X.; Liu, X.J.; Qiu, H.J. Platinum Single Atoms/Clusters Stabilized in Transition Metal Oxides for Enhanced Electrocatalysis. Electrochim. Acta 2019, 297, 155–162. [Google Scholar] [CrossRef]
- Peuckert, M.; Yoneda, T.; Betta, R.A.D.; Boudart, M. Oxygen Reduction on Small Supported Platinum Particles. J. Electrochem. Soc. 1986, 133, 944–946. [Google Scholar] [CrossRef]
- Kinoshita, K. Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes. J. Electrochem. Soc. 1990, 137, 845–848. [Google Scholar] [CrossRef]
- Markovic, N.; Gasteiger, H.; Ross, P. Kinetics of Oxygen Reduction on Pt (hkl) Electrodes: Implications for the Crystallite Size Effect with Supported Pt Electrocatalysts. J. Electrochem. Soc. 1997, 144, 1591–1597. [Google Scholar] [CrossRef]
- Gasteiger, H.A.; Kocha, S.S.; Sompalli, B.; Wagner, F.T. Activity Benchmarks and Requirements for Pt, Pt-alloy, and non-Pt Oxygen Reduction Catalysts for PEMFCs. Appl. Catal. B Environ. 2005, 56, 9–35. [Google Scholar] [CrossRef]
- Shinozaki, K.; Morimoto, Y.; Pivovara, B.S.; Kocha, S.S. Re-examination of the Pt Particles Size Effect on the Oxygen Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion. Electrochim. Acta 2016, 213, 783–790. [Google Scholar] [CrossRef]
- Garlyyev, B.; Kratzl, K.; Rück, M.; Michalička, J.; Fichtner, J.; Macak, J.M.; Kratky, T.; Günther, S.; Cokoja, M.; Bandarenka, A.S.; et al. Optimizing the Size of Platinum Nanoparticles for Enhanced Mass Activity in the Electrochemical Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2019, 58, 9596–9600. [Google Scholar] [CrossRef]
- Zeliger, H.I. Fuel Cell Performance as a Function of Catalyst Surface Area. J. Electrochem. Soc. 1967, 114, 144. [Google Scholar] [CrossRef]
- Vogel, W.M.; Lundquist, J.T. Reduction of Oxygen on Teflon-Bonded Platinum Electrodes. J. Electrochem. Soc. 1970, 117, 1512–1516. [Google Scholar] [CrossRef]
- Blurton, K.F.; Greenberg, P.; Oswin, H.G.; Rutt, D.R. The Electrochemical Activity of Dispersed Platinum. J. Electrochem. Soc. 1972, 119, 559–563. [Google Scholar] [CrossRef]
- Yano, H.; Watanabe, M.; Iiyama, A.; Uchida, H. Particle-Size Effect of Pty Cathode Catalysts on Durability in Fuel Cells. Nano Energy 2016, 29, 323–333. [Google Scholar] [CrossRef]
- Mayrhofer, K.J.J.; Strmcnik, D.; Blizanac, B.B.; Stamenkovic, V.; Arenz, M.; Markovic, N.M. Measurement of Oxygen Reduction Activities via the Rotating Disk Electrode Method: From Pt Model Surfaces to Carbon-Supported High Surface Area Catalysts. Electrhochim. Acta 2008, 53, 3181–3188. [Google Scholar] [CrossRef]
- Shao, M.; Peles, A.; Shoemaker, K. Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Lett. 2011, 11, 3714–3719. [Google Scholar] [CrossRef] [PubMed]
- Inaba, M.; Zana, A.S.; Quinson, J.; Bizzotto, F.; Dosche, C.; Dworzak, A.; Oezaslan, M.; Simonsen, S.B.; Kuhn, L.T.; Arenz, M. The Oxygen Reduction Reaction on Pt: Why Particle size and Interparticle Distance Matter. ACS Catal. 2021, 11, 7144–7153. [Google Scholar] [CrossRef]
- Park, Y.-C.; Tokiwa, H.; Kakinuma, K.; Watanabe, M.; Uchida, M. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. J. Power Sources 2016, 315, 179–191. [Google Scholar] [CrossRef]
- Watanabe, M.; Motoo, S. Electrocatalysis by Ad-atoms: Part III. Enhancement of the Oxidation of Carbon Monoxide on Platinum by Ruthenium Ad-atoms. J. Electroanal. Chem. 1975, 60, 275–283. [Google Scholar] [CrossRef]
- Uchida, H.; Ikeda, N.; Watanabe, M. Electrochemical Quartz Crystal Microbalance Study of Copper Adatoms on Gold Electrodes Part II. Further Discussion on the Specific Adsorption of Anions from Solutions of Perchloric and Sulfuric Acid. J. Electroanal. Chem. 1997, 424, 5–12. [Google Scholar] [CrossRef]
- López, M.R.; Gullón, J.S.; Herrero, E.; Tuñón, P.; Feliu, J.M.; Aldaz, A.; Carrasquillo, A., Jr. Electrochemical Reactivity of Aromatic Molecules at Nanometer-Sized Surface Domains: From Pt(hkl) Single Crystal Electrodes to Preferentially Oriented Platinum Nanoparticles. J. Am. Chem. Soc. 2010, 132, 2233–2242. [Google Scholar] [CrossRef]
- Jerkiewicz, G. Electrochemical Hydrogen Adsorption and Absorption. Part 1: Under-potential Deposition of Hydrogen. Electrocatalysis 2010, 1, 179–199. [Google Scholar] [CrossRef]
- Solla-Gullón, J.; Rodriguez, P.; Aldaz, E.; Feliu, J.M. Surface Characterization of Platinum Electrodes. Phys. Chem. Chem. Phys. 2008, 10, 1359–1373. [Google Scholar] [CrossRef]
- Santos, V.P.; Camara, G.A. Platinum Single Crystal Electrodes: Prediction of the Surface Structures of Low and High Miller Indexes Faces. Results Surf. Interfaces 2021, 3, 100006. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Spasov, D.D.; Ivanova, N.A.; Zasypkina, A.A.; Smirnov, S.A.; Grigoriev, S.A. Screening of Carbon-Supported Platinum Electrocatalysts Using Frumkin Adsorption Isotherms. Inorganics 2023, 11, 103–116. [Google Scholar] [CrossRef]
- van der Klink, J.J.; Brom, H.B. NMR in Metals, Metal Particles and Metal Cluster Compounds. Prog. Nucl. Magn. Reason. Spectrosc. 2000, 36, 89–201. [Google Scholar] [CrossRef]
- Yano, H.; Inukai, J.; Uchida, H.; Watanabe, M.; Babu, P.K.; Kobayashi, T.; Chung, J.H.; Oldfield, E.; Wieckowski, A. Particle-Size Effect of Nanoscale Platinum Catalysts in Oxygen Reduction Reaction an Electrochemical and 195Pt EC-NMR Study. Phys. Chem. Chem. Phys. 2006, 8, 4932–4939. [Google Scholar] [CrossRef]
- Tristsaris, G.A.; Greeley, J.; Rossmeisl, J.; Nørskov, J.K. Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt. Catal. Lett. 2011, 141, 909–913. [Google Scholar] [CrossRef]
- Okamoto, Y. Comparison of Hydrogen Atom Adsorption on Pt Clusters with that on Pt Surfaces: A Study from Density-Functional Calculations. Chem. Phys. Lett. 2006, 429, 209–213. [Google Scholar] [CrossRef]
- Gudmundsdóttir, S.; Skúlason, E.; Weststrate, K.-J.; Juurlink, L.; Jónsson, H. Hydrogen adsorption and desorption at the Pt(110)-(1×2) surface: Experimental and theoretical study. Phys. Chem. Chem. Phys. 2013, 15, 6323–6332. [Google Scholar] [CrossRef]
- Watanabe, M.; Tryk, D.A.; Wakisaka, M.; Yano, H.; Uchida, H. Overview of recent developments in oxygen reduction electrocatalysis. Electrochim. Acta 2012, 84, 187–201. [Google Scholar] [CrossRef]
- Song, Z.; Zhu, Y.-N.; Liu, H.; Banis, M.N.; Zhang, L.; Li, J.; Doyle-Davis, K.; Li, R.; Sham, T.-K.; Yang, L.; et al. Engineering the Low Coordinated Pt Single Atom to Achieve the Superior Electrocatalytic Performance toward Oxygen Reduction. Small 2020, 16, 2003096. [Google Scholar] [CrossRef] [PubMed]
- Wakisaka, M.; Udagawa, Y.; Suzuki, H.; Uchida, H.; Watanabe, M. Structural Effects on the Surface Oxidation Processes at Pt Single-Crystal Electrodes Studied by X-ray Photoelectron Spectroscopy. Energy Environ. Sci. 2011, 4, 1662–1666. [Google Scholar] [CrossRef]
- Wang, S.; Omidvar, N.; Marx, E.; Xin, H. Overcoming Site Heterogeneity In Search of Metal Nanocatalysts. ACS Comb. Sci. 2018, 20, 567–572. [Google Scholar] [CrossRef]
Catalysts | H2PtCl6·6H2O (mmol L−1) | EtOH 1 (mL) | Pt Loaded 2 (wt%) | Average Particle Size, d 3 (nm) |
---|---|---|---|---|
Pt1.1nm/C | 4.6 | 25.0 | 20.0 | 1.1 ± 0.2 |
Pt1.2nm/C | 11.8 | 5.0 | 11.8 | 1.2 ± 0.2 |
Pt1.3nm/C | 23.4 | 5.0 | 19.8 | 1.3 ± 0.2 |
Pt1.4nm/C | 24.0 | 5.0 | 12.6 | 1.4 ± 0.2 |
Pt1.8nm/C | 47.9 | 2.5 | 17.5 | 1.8 ± 0.2 |
Electrodes 1 | mPt2 (μg cm−2) | SSA3 (m2 g−1) | ECSA4 (m2 g−1) | ECAA5 (%) |
---|---|---|---|---|
Pt1.1nm/C | 28 | 253 | 142 | 56 |
Pt1.2nm/C | 30 | 232 | 121 | 52 |
Pt1.3nm/C | 32 | 214 | 166 | 78 |
Pt1.4nm/C | 20 | 199 | 195 | 98 |
Pt1.8nm/C | 30 | 155 | 176 | 113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yano, H.; Iwasaki, K. Size-Dependence of the Electrochemical Activity of Platinum Particles in the 1 to 2 Nanometer Range. Surfaces 2024, 7, 472-481. https://doi.org/10.3390/surfaces7030030
Yano H, Iwasaki K. Size-Dependence of the Electrochemical Activity of Platinum Particles in the 1 to 2 Nanometer Range. Surfaces. 2024; 7(3):472-481. https://doi.org/10.3390/surfaces7030030
Chicago/Turabian StyleYano, Hiroshi, and Kouta Iwasaki. 2024. "Size-Dependence of the Electrochemical Activity of Platinum Particles in the 1 to 2 Nanometer Range" Surfaces 7, no. 3: 472-481. https://doi.org/10.3390/surfaces7030030
APA StyleYano, H., & Iwasaki, K. (2024). Size-Dependence of the Electrochemical Activity of Platinum Particles in the 1 to 2 Nanometer Range. Surfaces, 7(3), 472-481. https://doi.org/10.3390/surfaces7030030