The Usefulness of Infrared Spectroscopy for Elucidating the Degradation Mechanism of Metal Industrial Heritage Coatings
Abstract
:1. Introduction
2. Coating Studies
2.1. Sample Preparation
2.2. Ageing
2.3. Standard Analysis
3. Infrared Spectroscopy
3.1. Transmission
3.2. Attenuated Total Reflection (ATR)
3.3. Photoacoustics
3.4. Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy
4. Industrial Heritage Coatings
4.1. Waxes
4.1.1. Degradation and Challenges
4.1.2. Environmental Concerns
4.2. Acrylics
4.2.1. Degradation and Challenges
4.2.2. Environmental Concerns
4.3. Carboxylates
4.3.1. Degradation and Challenges
4.3.2. Environmental Concerns
4.4. Polyurethane
4.4.1. Degradation and Challenges
4.4.2. Environmental Concerns
4.5. Fluorinated Polymers
4.5.1. Degradation and Challenges
4.5.2. Environmental Concerns
4.6. Polysilicones
4.6.1. Degradation and Challenges
4.6.2. Environmental Concerns
5. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koch, G.H.; Brongers, M.P.H.; Thompson, N.G.; Virmani, Y.P.; Payer, J.H. Corrosion Cost and Preventive Strategies in the United States; 2001. Available online: https://www.researchgate.net/publication/235934414_Corrosion_Cost_and_Preventive_Strategies_in_the_United_States (accessed on 17 June 2024).
- Dennis Pillion Al.com. 2023. Available online: https://www.al.com/news/birmingham/2023/05/bluestone-coke-failed-to-pay-283k-for-air-pollution-fines-in-birmingham-health-officials-say.html (accessed on 17 June 2024).
- CBS News. 2018. Available online: https://www.cbsnews.com/pittsburgh/news/smokestacks-at-former-coke-plant-set-for-demolition/ (accessed on 17 June 2024).
- Cottis, B.; Graham, M.; Lindsay, R.; Lyon, S.; Richardson, T.; Scantlebury, D.; Stott, H. (Eds.) Shreir’s Corrosion; Elsevier Science: Amsterdam, The Netherlands, 2010; ISBN 978-0-444-52787-5. [Google Scholar]
- Cano, E.; Lafuente, D.; Bastidas, D.M. Use of EIS for the Evaluation of the Protective Properties of Coatings for Metallic Cultural Heritage: A Review. J. Solid State Electrochem. 2010, 14, 381–391. [Google Scholar] [CrossRef]
- Molina, M.T.; Cano, E.; Ramírez-Barat, B. Protective Coatings for Metallic Heritage Conservation: A Review. J. Cult. Herit. 2023, 62, 99–113. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development. Emission Scenario Documents on Coating Industry (Paints, Laquers and Varnishes); OECD: Paris, France, 2009. [Google Scholar]
- Kreislova, K.; Knotkova, D.; Geiplova, H. Atmospheric Corrosion of Historical Industrial Structures. In Corrosion and Conservation of Cultural Heritage Metallic Artefacts; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; pp. 311–343. ISBN 9781782421542. [Google Scholar]
- California Department of Transportation. Greenhouse Gas Emissions Arising from Microplastics Pollution; California Department of Transportation: Sacramento, CA, USA, 2024. [Google Scholar]
- Stubbins, A.; Law, K.L.; Muñoz, S.E.; Bianchi, T.S.; Zhu, L. Plastics in the Earth System. Science (1979) 2021, 373, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Molina, M.T.; Cano, E.; Leal, J.; Fort, R.; Álvarez de Buergo, M.; Ramírez-Barat, B. Protective Coatings for Metals in Scientific—Technical Heritage: The Collection of the Spanish National Museum of Science and Technology (MUNCYT). Heritage 2023, 6, 2473–2488. [Google Scholar] [CrossRef]
- Weththimuni, M.L.; Licchelli, M. Heritage Conservation and Restoration: Surface Characterization, Cleaning and Treatments. Coatings 2023, 13, 457. [Google Scholar] [CrossRef]
- Nichols, M.; Research, F.; Engineering, A. Principles of Accelerated Weathering: Evaluations of Coatings; CoatingsTech: Wickford, UK, 2020. [Google Scholar]
- An, Z.; Xu, Z.; Ye, Y.; Yang, R. A Rapid and Highly Sensitive Evaluation of Polymer Composite Aging with Linear Correlation to Real-Time Aging. Anal. Chim. Acta 2021, 1169, 338632. [Google Scholar] [CrossRef]
- Micom-UV-Testing-EBook-2019-Final (2) 1. Available online: https://medium.com/@Micom/uv-testing-guide-ebook-266766fff868 (accessed on 17 June 2024).
- Ramírez Barat, B.; Cano, E.; Letardi, P. Advances in the Design of a Gel-Cell Electrochemical Sensor for Corrosion Measurements on Metallic Cultural Heritage. Sens. Actuators B Chem. 2018, 261, 572–580. [Google Scholar] [CrossRef]
- Grayburn, R.A.; Dowsett, M.; De Keersmaecker, M.; Banerjee, D.; Brown, S.; Adriaens, A. Towards a New Method for Coating Heritage Lead. Herit. Sci. 2014, 2, 14. [Google Scholar] [CrossRef]
- Grissom, C.A.; Grabow, N.; Riley, C.S.; Charola, A.E. Evaluation of Coating Performance on Silver Exposed to Hydrogen Sulfide. J. Am. Inst. Conserv. 2013, 52, 82–96. [Google Scholar] [CrossRef]
- Kiele, E.; Lukseniene, J.; Griguceviciene, A.; Selskis, A.; Senvaitiene, J.; Ramanauskas, R.; Raudonis, R.; Kareiva, A. Methyl–Modified Hybrid Organic-Inorganic Coatings for the Conservation of Copper. J. Cult. Herit. 2014, 15, 242–249. [Google Scholar] [CrossRef]
- Pouliot, B.; Matsen, C.; Mass, J.; Donnelly, W.; Andrews, K.; Bearden, M.; Kaplan, L.; Dodson, K.; Hamilton, E. Three Decades Later: A Status Report on the Silver Lacquering Program at Winterthur. Suite 2000, 320, 452–9545. [Google Scholar]
- Pandey, G.C.; Kumar, A. Non-Destructive Characterization of Surface Coating on Metal by DRIFT Spectroscopy. Polym. Test. 1995, 14, 309–313. [Google Scholar] [CrossRef]
- Urbaniak-Domagala, W. The Use of the Spectrometric Technique FTIR-ATR to Examine the Polymers Surface. In Advanced Aspects of Spectroscopy; InTech: Houston TX, USA, 2012. [Google Scholar]
- Stimson, M.M.; Joannes O’Donnell, M. Infrared and Ultraviolet Absorption Spectra of Cytosine and Isocytosine in The. J. Am. Chem. Soc. 1952, 74, 1805–1808. [Google Scholar] [CrossRef]
- Wilhelm, C.; Gardette, J.-L. Infrared Analysis of the Photochemical Behaviour of Segmented Polyurethanes: 1. Aliphatic Poly(Ester-Urethane). Polymer 1997, 38, 4019–4031. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, J.; Yang, R.; Iervolino, R.; Barbera, S. A Novel In-Situ Aging Evaluation Method by FTIR and the Application to Thermal Oxidized Nitrile Rubber. Polym. Degrad. Stab. 2016, 128, 99–106. [Google Scholar] [CrossRef]
- Derrick, M.R.; Landry, J.M. Scientific Tools for Conservation Infrared Spectroscopy in Conservation Science; Getty Publications: Los Angeles, CA, 1999; Available online: https://www.getty.edu/publications/virtuallibrary/0892364696.html (accessed on 17 June 2024).
- Kotlar, M.; Matijaković Mlinarić, N.; Desnica, V.; Marušić, K. Studying a 2 Millennia Old Bronze Kettle Using Easily Accessible Characterization Techniques. Herit. Sci. 2021, 9, 10. [Google Scholar] [CrossRef]
- Vahur, S.; Teearu, A.; Peets, P.; Joosu, L.; Leito, I. ATR-FT-IR Spectral Collection of Conservation Materials in the Extended Region of 4000-80 cm−1. Anal. Bioanal. Chem. 2016, 408, 3373–3379. [Google Scholar] [CrossRef]
- Vlasak, R.; Klueppel, I.; Grundmeier, G. Combined EIS and FTIR–ATR Study of Water Uptake and Diffusion in Polymer Films on Semiconducting Electrodes. Electrochim. Acta 2007, 52, 8075–8080. [Google Scholar] [CrossRef]
- Taheri, P.; Flores, J.R.; Hannour, F.; de Wit, J.H.W.; Terryn, H.; Mol, J.M.C. In Situ Study of Buried Interfacial Bonding Mechanisms of Carboxylic Polymers on Zn Surfaces. J. Phys. Chem. C 2013, 117, 3374–3382. [Google Scholar] [CrossRef]
- Gasera Depth Profiling with Photoacoustic Spectroscopy 2010, 1–17. Available online: https://gasera.fi/product/pa301/ (accessed on 17 June 2024).
- Hodson, J.; Lander, J.A. The Analysis of Cured Paint Media and a Study of the Weathering of Alkyd Paints by FTi.r./PAS. Polymer 1987, 28, 251–256. [Google Scholar] [CrossRef]
- Zhang, W.R.; Zhu, T.T.; Smith, R.; Lowe, C. A Non-Destructive Study on the Degradation of Polymer Coating I: Step-Scan Photoacoustic FTIR and Confocal Raman Microscopy Depth Profiling. Polym. Test. 2012, 31, 855–863. [Google Scholar] [CrossRef]
- Pasieczna, S.; Ryczkowski, J. Infrared Photoacoustic Spectroscopy—Advantages and Disadvantages in Surface Science and Catalysis Research. J. Phys. IV (Proc.) 2003, 109, 65–71. [Google Scholar] [CrossRef]
- Meilunas, R.J.; Bentsen, J.G.; Steinberg, A. Analysis of Aged Paint Binders by FTIR Spectroscopy. Stud. Conserv. 1990, 35, 33–51. [Google Scholar] [CrossRef]
- Roedel, E.; Urakawa, A.; Kureti, S.; Baiker, A. On the Local Sensitivity of Different IR Techniques: Ba Species Relevant in NOx Storage-Reduction. Phys. Chem. Chem. Phys. 2008, 10, 6190. [Google Scholar] [CrossRef] [PubMed]
- Barta, E.; Papp, G.; Preklet, E.; Tolvaj, L.; Berkesi, O.; Nagy, T.; Szatmári, S. Changes in the DRIFT Spectra of Softwood Irradiated by UV-Laser as a Function of Energy. Acta Silv. Lignaria Hung. 2005, 1, 83–91. [Google Scholar] [CrossRef]
- Moffett, D.L. Wax Coatings on Ethnographic Metal Objects: Justifications for Allowing a Tradition to Wane. J. Am. Inst. Conserv. 1996, 35, 1–7. [Google Scholar] [CrossRef]
- Chowdhury, K.P. Effect of Special Finishes on the Functional Properties of Cotton Fabrics. J. Text. Sci. Technol. 2018, 4, 49–66. [Google Scholar] [CrossRef]
- Swartz, N.; Clare, T.L. On the protective nature of wax coatings for culturally significant outdoor metalworks: Microstructural flaws, oxidative changes, and barrier properties. J. Am. Inst. Conserv. 2015, 54, 181–201. [Google Scholar] [CrossRef]
- Montagna, D.R. Tech Rotes Metals Number 1 Conserving Outdoor Bronze Sculpture; USA National Park Service, 1989. Available online: https://www.nps.gov/orgs/1739/upload/tech-note-metals-01-bronze-sculpture.pdf (accessed on 17 June 2024).
- Thickett, D.; Stanley, B. The Use and Mis-Use of Renaissance Wax; ICOM-CC Publications Online, 2019. Available online: https://www.icom-cc-publications-online.org/3557/Use-and-Mis-use-of-Renaissance-Wax (accessed on 17 June 2024).
- Vykydalová, A.; Cibulková, Z.; Čížová, K.; Vizárová, K.; Šimon, P. Degradation of Beeswax by NOx Pollution and UV Light Studied by DSC and FTIR Measurements. Thermochim. Acta 2020, 689, 178606. [Google Scholar] [CrossRef]
- Čížová, K.; Vizárová, K.; Ház, A.; Vykydalová, A.; Cibulková, Z.; Šimon, P. Study of the Degradation of Beeswax Taken from a Real Artefact. J. Cult. Herit. 2019, 37, 103–112. [Google Scholar] [CrossRef]
- Bartl, B.; Trejbal, J.; Ďurovič, M.; Vašíčková, S.; Valterová, I. Analysis of Efflorescence on Surface of Beeswax Seals. J. Cult. Herit. 2012, 13, 275–284. [Google Scholar] [CrossRef]
- Ambrosi, M.; Raudino, M.; Pieraccini, G.; Corti, C.; Tenorio-Alfonso, A.; Martínez, I. Understanding the Formation of Efflorescence on Beeswax Models Housed at the Natural History Museum of Florence. J. Cult. Herit. 2023, 62, 143–150. [Google Scholar] [CrossRef]
- Maglaya, I. Life Cycle Analysis of Nonpetroleum Based Wax; Thesis in Engineering, Architecture, Information and Technology, The University of Queensland: 2020. Available online: https://espace.library.uq.edu.au/view/UQ:562bf42 (accessed on 17 June 2024).
- Hanstveit, A.O. Biodegradability of Petroleum Waxes and Beeswax in an Adapted CO2 Evolution Test. Chemosphere 1992, 25, 605–620. [Google Scholar] [CrossRef]
- Cappitelli, F.; Cattò, C.; Villa, F. The Control of Cultural Heritage Microbial Deterioration. Microorganisms 2020, 8, 1542. [Google Scholar] [CrossRef]
- Wolfe, J.; Grayburn, R. A Review of the Development and Testing of Incralac Lacquer. J. Am. Inst. Conserv. 2017, 56, 225–244. [Google Scholar] [CrossRef]
- Down, J.L. The Evaluation of Selected Poly(Vinyl Acetate) and Acrylic Adhesives: A Final Research Update. Stud. Conserv. 2015, 60, 33–54. [Google Scholar] [CrossRef]
- Wan, H.; Song, D.; Li, X.; Zhang, D.; Gao, J.; Du, C. Failure Mechanisms of the Coating/Metal Interface in Waterborne Coatings: The Effect of Bonding. Materials 2017, 10, 397. [Google Scholar] [CrossRef]
- Pletincx, S.; Trotochaud, L.; Fockaert, L.-L.; Mol, J.M.C.; Head, A.R.; Karslıoğlu, O.; Bluhm, H.; Terryn, H.; Hauffman, T. In Situ Characterization of the Initial Effect of Water on Molecular Interactions at the Interface of Organic/Inorganic Hybrid Systems. Sci. Rep. 2017, 7, 45123. [Google Scholar] [CrossRef]
- Smith, B.C. Infrared Spectroscopy of Polymers X: Polyacrylates. Spectroscopy 2023, 38, 10–14. [Google Scholar] [CrossRef]
- Gaytán, I.; Burelo, M.; Loza-Tavera, H. Current Status on the Biodegradability of Acrylic Polymers: Microorganisms, Enzymes and Metabolic Pathways Involved. Appl. Microbiol. Biotechnol. 2021, 105, 991–1006. [Google Scholar] [CrossRef]
- Tristan Bravinder. The Science of Wax _ Getty News. 2017. Available online: https://www.getty.edu/news/developing-and-understanding-alternatives-to-incralac-for-protecting-outdoor-bronze-sculpture/ (accessed on 17 June 2024).
- Davison, S. A Review of Adhesives and Consolidants Used on Glass Antiquities. Stud. Conserv. 1984, 29, 191–194. [Google Scholar] [CrossRef]
- Boyatzis, S.C.; Veve, A.; Kriezi, G.; Karamargiou, G.; Kontou, E.; Argyropoulos, V. A Scientific Assessment of the Long-Term Protection of Incralac Coatings on Ancient Bronze Collections in the National Archaeological Museum and the Epigraphic and Numismatic Museum in Athens, Greece. In Artistry in Bronze; The J. Paul Getty Trust: Los Angeles, CA, USA, 2017; pp. 300–312. [Google Scholar]
- Artesani, A.; Turo, F.D.; Zucchelli, M.; Traviglia, A. Recent Advances in Protective Coatings for Cultural Heritage-an Overview. Coatings 2020, 10, 217. [Google Scholar] [CrossRef]
- Tanskanen, A.; Karppinen, M. Iron-Terephthalate Coordination Network Thin Films Through In-Situ Atomic/Molecular Layer Deposition. Sci. Rep. 2018, 8, 8976. [Google Scholar] [CrossRef] [PubMed]
- Smith, B. The Carbonyl Group, Part V: Carboxylates—Coming Clean. Available online: https://www.spectroscopyonline.com/view/carbonyl-group-part-v-carboxylates-coming-clean (accessed on 17 June 2024).
- Zhang, J. Development of Environmentally Friendly Non-Chrome Conversion Coatings for Cold-Rolled Steel; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2003. [Google Scholar]
- Rocca, E.; Steinmetz, J. Inhibition of Lead Corrosion with Saturated Linear Aliphatic Chain Monocarboxylates of Sodium. Corros. Sci. 2001, 43, 891–902. [Google Scholar] [CrossRef]
- Rocca, E.; Rapin, C.; Mirambet, F. Inhibition Treatment of the Corrosion of Lead Artefacts in Atmospheric Conditions and by Acetic Acid Vapour: Use of Sodium Decanoate. Corros. Sci. 2004, 46, 653–665. [Google Scholar] [CrossRef]
- Milošev, I.; Kosec, T.; Bele, M. The Formation of Hydrophobic and Corrosion Resistant Surfaces on Copper and Bronze by Treatment in Myristic Acid. J. Appl. Electrochem. 2010, 40, 1317–1323. [Google Scholar] [CrossRef]
- Health Canada Carboxylic Acids Group. Information Sheet. Available online: https://www.canada.ca/en/health-canada/services/chemical-substances/fact-sheets/chemicals-glance/carboxylic-acid-group.html (accessed on 11 August 2024).
- Somarathna, H.M.C.C.; Raman, S.N.; Mohotti, D.; Mutalib, A.A.; Badri, K.H. The Use of Polyurethane for Structural and Infrastructural Engineering Applications: A State-of-the-Art Review. Constr. Build. Mater. 2018, 190, 995–1014. [Google Scholar] [CrossRef]
- Smith, B.C. Infrared Spectroscopy of Polymers XIII: Polyurethanes. Spectroscopy 2023, 38, 14–16. [Google Scholar] [CrossRef]
- de Souza, F.M.; Kahol, P.K.; Gupta, R.K. Introduction to Polyurethane Chemistry in Polyurethane Chemistry: Renewable Polyols and Isocyanates; American Chemical Society: Washington, DC, USA, 2021; pp. 1–24. [Google Scholar]
- Gao, T.; He, Z.; Hihara, L.H.; Mehr, H.S.; Soucek, M.D. Outdoor Exposure and Accelerated Weathering of Polyurethane/Polysiloxane Hybrid Coatings. Prog. Org. Coat. 2019, 130, 44–57. [Google Scholar] [CrossRef]
- Carter, R.O.; Paputa Peck, M.C.; Bauer, D.R. The Characterization of Polymer Surfaces by Photoacoustic Fourier Transform Infrared Spectroscopy. Polym. Degrad. Stab. 1989, 23, 121–134. [Google Scholar] [CrossRef]
- Kelly, T. Determination of Formaldehyde and Toluene Diisocyanate Emissions from Indoor Residential Sources; United States Environmental Protection Agency: Columbus, OH, USA, 1996. [Google Scholar]
- Kuka, E.; Cirule, D.; Andersone, I.; Andersons, B.; Antons, A.; Kevers, M.; Danieks, M. Photodegradation Risk Evaluation of Polyurethane Gluelines in Wood Products by Infrared Spectroscopy and Mechanical Tests. Constr. Build. Mater. 2023, 379, 131251. [Google Scholar] [CrossRef]
- Albergamo, V.; Wohlleben, W.; Plata, D.L. Photochemical Weathering of Polyurethane Microplastics Produced Complex and Dynamic Mixtures of Dissolved Organic Chemicals. Environ. Sci. Process Impacts 2023, 25, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Ebnesajjad, S. Introduction to Fluoropolymers. In Applied Plastics Engineering Handbook; Elsevier: Amsterdam, The Netherlands, 2017; pp. 55–71. [Google Scholar]
- McKeen, L.W. Fluoropolymers. In Fatigue and Tribological Properties of Plastics and Elastomers; Elsevier: Amsterdam, The Netherlands, 2016; pp. 291–315. [Google Scholar]
- Nallasamy, P. Vibrational Spectroscopic Characterization of Form II Poly(Vinylidene Fluoride). Indian J. Pure Appl. Phys. 2005, 43, 821–827. [Google Scholar]
- Bhullar, S.; Ayşe Çelik Bedeloğlu Bursa Teknik Üniversitesi; Jun, M.B.G.; Sukhwinder, B.; Bhullar, S.K.; Bedeloglu, A.; Jun, M.B. Characterization and Auxetic Effect of Polytetrafluoroethylene Tubular Structure. Int. J. Adv. Trends Comput. Sci. Eng. 2014, 1, 8–13. [Google Scholar]
- Tanabe, H.; Nagai, M.; Darden, W.; Takayanagi, T. The Progress of Newly Developed Fluoro-Polymer Topcoat Systems-Weathering Performance and Track Records since the 1980’s; NACE International: Houston, TX, USA, 2011. [Google Scholar]
- Fluoropolymer Coating Market Size, Share Global Analysis Report, California Air Resources Board, 2022–2028, 1996. Available online: https://ww2.arb.ca.gov/resources/documents/report-determination-formaldehyde-and-toluene-diisocyanate-emissions-indoor (accessed on 17 June 2024).
- Agency for Toxic Substances and Disease Registry. Per- and Polyfluoroalkyl Substances (PFAS) and Your Health. Available online: https://www.atsdr.cdc.gov/pfas/health-effects/overview.html#:~:text=They%20have%20been%20used%20to,grease%2C%20water%2C%20and%20oil (accessed on 6 July 2024).
- United States Environmental Protection Agency. Our Current Understanding of the Human Health and Environmental Risks of PFAS. Available online: https://www.epa.gov/pfas/our-current-understanding-human-health-and-environmental-risks-pfas (accessed on 11 August 2024).
- Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, Fate and Transport of Perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, R.; Cousins, I.T.; DeWitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lindstrom, A.B.; Miller, M.F.; Ng, C.A.; Patton, S.; et al. Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS? Environ. Sci. Technol. 2020, 54, 12820–12828. [Google Scholar] [CrossRef]
- Baker, T.J.; Tonkyn, R.G.; Thompson, C.J.; Dunlap, M.K.; Koster van Groos, P.G.; Thakur, N.A.; Wilhelm, M.J.; Myers, T.L.; Johnson, T.J. An Infrared Spectral Database for Gas-Phase Quantitation of Volatile per- and Polyfluoroalkyl Substances (PFAS). J. Quant. Spectrosc. Radiat. Transf. 2023, 295, 108420. [Google Scholar] [CrossRef]
- Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH); Euopean Union: 2023. Available online: https://environment.ec.europa.eu/topics/chemicals/reach-regulation_en#:~:text=Contact-,Overview,can%20be%20posed%20by%20chemicals (accessed on 17 June 2024).
- Nazarov, A.; Petrunin, M.; Maksaeva, L.; Yurasova, T.; Traverso, P.; Marshakov, A. Vapour Phase Deposition of Thin Siloxane Coatings on the Iron Surface. The Impact of the Layer Structure and Oxygen Adsorption on Corrosion Stability. Coatings 2021, 11, 1217. [Google Scholar] [CrossRef]
- El-Moaz, Y.A.; Mohamed, W.A.; Rifai, M.M.; Morgan, N.N.; Metwally, K.H.; Abdel Ghany, N.A. Fabrication, Characterization, and Corrosion Protection of Siloxane Coating on an Oxygen Plasma Pre-Treated Silver-Copper Alloy. J. Mater. Eng. Perform. 2023, 32, 8818–8830. [Google Scholar] [CrossRef]
- Rücker, C.; Kümmerer, K. Environmental Chemistry of Organosiloxanes. Chem. Rev. 2015, 115, 466–524. [Google Scholar] [CrossRef]
- Iezzi, E.B. Single-Component Polysiloxane Topcoats for Navy Surface Ships and Aircraft; 2015 Department of Defense-Allied Nations Technical Report, 2015. Available online: https://www.dau.edu/sites/default/files/Migrated/CopDocuments/Single-Component%20Polysiloxane%20Topcoats%20for%20Navy%20Surface%20Ships%20and%20Aircraft.pdf (accessed on 17 June 2024).
- Wang, D.; Bierwagen, G.P. Sol–Gel Coatings on Metals for Corrosion Protection. Prog. Org. Coat. 2009, 64, 327–338. [Google Scholar] [CrossRef]
- Ashkenazi, D.; Nusbaum, I.; Shacham-Diamand, Y.; Cvikel, D.; Kahanov, Y.; Inberg, A. A Method of Conserving Ancient Iron Artefacts Retrieved from Shipwrecks Using a Combination of Silane Self-Assembled Monolayers and Wax Coating. Corros. Sci. 2017, 123, 88–102. [Google Scholar] [CrossRef]
- Hofmann, J. Ir Spectroscopic Method for Determination of Silicone Cross-Linking, Pressure Sensitive Tape Council, 2016. Available online: https://www.semanticscholar.org/paper/IR-SPECTROSCOPIC-METHOD-FOR-DETERMINATION-OF-Hofmann/485334873c8e4551f510bfdc83ac5369e5567310 (accessed on 17 June 2024).
- Al-Saadi, S.; Singh Raman, R.K. Silane Coatings for Corrosion and Microbiologically Influenced Corrosion Resistance of Mild Steel: A Review. Materials 2022, 15, 7809. [Google Scholar] [CrossRef] [PubMed]
- Alton, M.W.; Browne, E.C. Atmospheric Degradation of Cyclic Volatile Methyl Siloxanes: Radical Chemistry and Oxidation Products. ACS Environ. Au 2022, 2, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Divsalar, A.; Divsalar, H.; Dods, M.N.; Prosser, R.W.; Tsotsis, T.T. Field Testing of a UV Photodecomposition Reactor for Siloxane Removal from Landfill Gas. Ind. Eng. Chem. Res. 2019, 58, 16502–16515. [Google Scholar] [CrossRef]
- Camino, G.; Lomakin, S.M.; Lageard, M. Thermal Polydimethylsiloxane Degradation. Part 2. The Degradation Mechanisms. Polymer 2002, 43, 2011–2015. [Google Scholar] [CrossRef]
- Genualdi, S.; Harner, T.; Cheng, Y.; MacLeod, M.; Hansen, K.M.; Van Egmond, R.; Shoeib, M.; Lee, S.C. Global Distribution of Linear and Cyclic Volatile Methyl Siloxanes in Air. Environ. Sci. Technol. 2011, 45, 3349–3354. [Google Scholar] [CrossRef]
- Chen, W.; Oh, J.; Lim, J.; Moon, H. Occurrence, Time Trends, and Human Exposure of Siloxanes and Synthetic Musk Compounds in Indoor Dust from Korean Homes. Ecotoxicol. Environ. Saf. 2023, 266, 115538. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konadu-Yiadom, E.; Bontrager, E.; Staerz, A. The Usefulness of Infrared Spectroscopy for Elucidating the Degradation Mechanism of Metal Industrial Heritage Coatings. Surfaces 2024, 7, 846-863. https://doi.org/10.3390/surfaces7040056
Konadu-Yiadom E, Bontrager E, Staerz A. The Usefulness of Infrared Spectroscopy for Elucidating the Degradation Mechanism of Metal Industrial Heritage Coatings. Surfaces. 2024; 7(4):846-863. https://doi.org/10.3390/surfaces7040056
Chicago/Turabian StyleKonadu-Yiadom, Ernest, Ethan Bontrager, and Anna Staerz. 2024. "The Usefulness of Infrared Spectroscopy for Elucidating the Degradation Mechanism of Metal Industrial Heritage Coatings" Surfaces 7, no. 4: 846-863. https://doi.org/10.3390/surfaces7040056
APA StyleKonadu-Yiadom, E., Bontrager, E., & Staerz, A. (2024). The Usefulness of Infrared Spectroscopy for Elucidating the Degradation Mechanism of Metal Industrial Heritage Coatings. Surfaces, 7(4), 846-863. https://doi.org/10.3390/surfaces7040056