Photoelectrochemical and Structural Insights of Electrodeposited CeO2 Photoanodes
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Preparation of FTO Substrates
2.3. Preparation of CeO2 Photoanodes
2.4. Physicochemical Characterization of CeO2 Photoanodes
2.5. Photoelectrochemical Characterization of CeO2 Photoanodes
3. Results and Discussion
3.1. Electrodeposition of CeO2 Coating on Fto Glass
3.2. Effect of Annealing Temperature on the Structural Properties of CeO2 Photoanodes
3.2.1. XRD
3.2.2. Raman Spectroscopy
3.2.3. XPS
3.3. SEM Analysis
3.4. Effect of Annealing Temperature on the Optical Properties of CeO2 Photoanodes
3.5. Photoelectrochemical Properties of CeO2 Photoanodes
System | Light Source | J (mA/cm2) | Conditions | Ref |
---|---|---|---|---|
CeO2—1000 °C | (AM) 1.5 filter | 0.22 | Bias potential: 0.0 V vs. Ag/AgCl | [48] |
CeO2-g-C3N4 QDs | 300 W Xe lamp | 0.70 | Na2SO4 0.5 M | [49] |
CeO2-g-Ag QDs | 300 W Xe lamp | 0.50 | Bias potential: 1.0 V SCE | [50] |
CeO2-g-C3N4 | 500 W Xe lamp | 0.35 | Na2SO4 0.1 M | [51] |
CeO2 nanorods | 500 W Xe lamp | 1.20 | KOH 1.0 M + CH3OH 1.0 M | [52] |
ITO-CeO2-PDA-C | 300 W Xe lamp | 3.00 | Na2SO3 0.2 M | [53] |
NiO-CeO2 | 125 W Hg lamp | 5.50 | Na2SO4 0.1 M | [24] |
FTO-CeO2/Cds | Blue LED lamp 470 nm | 2.00 | Na2SO4 0.1 M | [54] |
FTO-CeO2 | (AM) 1.5 filter | 1.20 | Bias potential: +1.2 V vs. Ag/AgCl Na2SO4 0.1 M 1.8 V vs. RHE | This study |
3.6. Electronic Band Structure of CeO2 Photoanodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fathima Khyrun, S.M.; Jegatha Christy, A.; Mayandi, J.; Sagadevan, S. Synergistic Effect of Nano-Floret CeO2/ZnO Nanocomposite as an Efficient Photocatalyst for Environmental Remediation. Ceram. Int. 2024, 50, 11817–11832. [Google Scholar] [CrossRef]
- Chibac-Scutaru, A.L.; Podasca, V.; Dascalu, I.A.; Melinte, V. Exploring the Influence of Synthesis Parameters on the Optical Properties for Various CeO2 NPs. Nanomaterials 2022, 12, 1402. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Alghamdi, A.A.; Al-Abdulkarim, H.A.; Mustafa, G.M.; Baghdadi, N.; Alharthi, F.A. Structural, Morphological, and Electrochemical Performance of CeO2/NiO Nanocomposite for Supercapacitor Applications. Appl. Sci. 2021, 11, 411. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Alanazi, H.S.; Abdullah Alsyahi, A.; Ahmad Citation, N.; Hydrothermal Synthesis, N.; Syrek, K.; Vergara, A. Hydrothermal Synthesis, Characterization and Exploration of Photocatalytic Activities of Polyoxometalate: Ni-CoWO4 Nanoparticles Characterization and Exploration of Photocatalytic Activities of Polyoxometalate: Ni-CoWO4. Crystals 2021, 11, 456. [Google Scholar] [CrossRef]
- Mancuso, A.; Iervolino, G. Synthesis and Application of Innovative and Environmentally Friendly Photocatalysts: A Review. Catalysts 2022, 12, 1074. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174–101185. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, H.; Hao, Z.; Yu, M.; Chen, X.; Chen, J. Electrodeposition of (Hydro)Oxides for an Oxygen Evolution Electrode. Chem. Sci. 2020, 11, 10614–10625. [Google Scholar] [CrossRef] [PubMed]
- Rebey, A.; Hamdi, R.; Massoudi, I.; Hammami, B. In Situ Electrodeposition of Pb and Ag Applied on Fluorine Doped Tin Oxide Substrates: Comparative Experimental and Theoretical Study. Materials 2022, 15, 8865. [Google Scholar] [CrossRef]
- Orozco-Messana, J.; Camaratta, R. ZnO Electrodeposition Model for Morphology Control. Nanomaterials 2022, 12, 720. [Google Scholar] [CrossRef]
- Pikalova, E.; Osinkin, D.; Kalinina, E. Direct Electrophoretic Deposition and Characterization of Thin-film Membranes Based on Doped BaCeO3 and CeO2 for Anode-supported Solid Oxide Fuel Cells. Membranes 2022, 12, 682. [Google Scholar] [CrossRef]
- Zeng, Y.B.; Qu, N.S.; Hu, X.Y. Preparation and Characterization of Electrodeposited Ni-CeO2 Nanocomposite Coatings with High Current Density. Int. J. Electrochem. Sci. 2014, 9, 8145–8154. [Google Scholar] [CrossRef]
- Yang, Y.; Du, X.; Yi, C.; Liu, J.; Zhu, B.; Zhang, Z. Structural, Optical and Electrical Properties of CeO2 Thin Films Simultaneously Prepared by Anodic and Cathodic Electrodeposition. Appl. Surf. Sci. 2018, 440, 1073–1082. [Google Scholar] [CrossRef]
- Golden, T.D.; Shang, Y.; Wang, Q.; Zhou, T. Electrochemical Synthesis of Rare Earth Ceramic Oxide Coatings. Adv. Ceram. Process. 2015, 4, 1–26. [Google Scholar]
- Hamlaoui, Y.; Pedraza, F.; Remazeilles, C.; Cohendoz, S.; Rébéré, C.; Tifouti, L.; Creus, J. Cathodic Electrodeposition of Cerium-Based Oxides on Carbon Steel from Concentrated Cerium Nitrate Solutions. Part, I. Electrochemical and Analytical Characterisation. Mater. Chem. Phys. 2009, 113, 650–657. [Google Scholar] [CrossRef]
- Bouchaud, B.; Balmain, J.; Bonnet, G.; Pedraza, F. PH-Distribution of Cerium Species in Aqueous Systems. J. Rare Earths 2012, 30, 559–562. [Google Scholar] [CrossRef]
- Li, Z.; Jia, D.; Zhang, W.; Li, Y.; Wang, M.; Zhang, D. Enhanced Photocatalytic Performance by Regulating the Ce3+/Ce4+ Ratio in Cerium Dioxide. Front. Chem. Sci. Eng. 2024, 18, 31–44. [Google Scholar] [CrossRef]
- Zhang, G.; Zhou, Y.; Yang, Y.; Kong, T.; Song, Y.; Zhang, S.; Zheng, H. Elucidating the Role of Surface Ce4+ and Oxygen Vacancies of CeO2 in the Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol. Molecules 2023, 28, 3785. [Google Scholar] [CrossRef]
- Sbera, T.; Nayak, H.; Rama Rao Medicherla, V.; Kumar Kamilla, S. Effect of Heat Treatment on Structural Properties of CeO2 Prepared by Chemical-Route Method. Mater. Today Proc. 2023, 74, 1063–1067. [Google Scholar] [CrossRef]
- Acosta-Silva, Y.J.; Castañedo-Perez, R.; Torres-Delgado, G.; Méndez-López, A.; Zelaya-Ángel, O. Effect of Annealing Temperature on Structural, Morphological and Optical Properties of CeO2 Thin Films Obtained from a Simple Precursor Solution. J. Solgel Sci. Technol. 2017, 82, 20–27. [Google Scholar] [CrossRef]
- Phokha, S.; Limwichean, S.; Horprathum, M.; Patthanasettakul, V.; Chananonnawathorn, C.; Eiamchai, P.; Chanlek, N.; Maensiri, S. Effect of Annealing Temperature on the Structural and Magnetic Properties of CeO2 Thin Films. Thin Solid Film. 2020, 704, 138001–138009. [Google Scholar] [CrossRef]
- Channei, D.; Phanichphant, S.; Nakaruk, A.; Mofarah, S.S.; Koshy, P.; Sorrell, C.C. Aqueous and Surface Chemistries of Photocatalytic Fe-Doped CeO2 Nanoparticles. Catalysts 2017, 7, 45. [Google Scholar] [CrossRef]
- Luo, Y.; Li, J.; Zhu, J.; Zhao, Y.; Gao, X. Fabrication of Condensate Microdrop Self-Propelling Porous Films of Cerium Oxide Nanoparticles on Copper Surfaces. Angew. Chem. Int. Ed. 2015, 54, 4876–4879. [Google Scholar] [CrossRef] [PubMed]
- Prieur, D.; Bonani, W.; Popa, K.; Walter, O.; Kriegsman, K.W.; Engelhard, M.H.; Guo, X.; Eloirdi, R.; Gouder, T.; Beck, A.; et al. Size Dependence of Lattice Parameter and Electronic Structure in CeO2 Nanoparticles. Inorg. Chem. 2020, 59, 5760–5767. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, M.; Li, X.; Wang, C.; Wang, R.; Wang, B.; Yan, H. MOF-Derived NiO/CeO2 Heterojunction: A Photocatalyst for Degrading Pollutants and Hydrogen Evolution. J. Mater. Sci. 2020, 55, 15930–15944. [Google Scholar] [CrossRef]
- Ederer, J.; Janoš, P.; Šťastný, M.; Henych, J.; Ederer, K.; Slušná, M.Š.; Tolasz, J. Nanocrystalline Cerium Oxide for Catalytic Degradation of Paraoxon Methyl: Influence of CeO2 Surface Properties. J. Environ. Chem. Eng. 2021, 9, 106229–106242. [Google Scholar] [CrossRef]
- Liu, J.; Dou, Z.; Zhang, T. Preparation of Oxygen Vacancy-Controllable CeO2 by Electrotransformation of a CeCl3 Solution and Its Oxidation Mechanism. Ceram. Int. 2020, 46, 5976–5982. [Google Scholar] [CrossRef]
- Silva, I.D.C.; Sigoli, F.A.; Mazali, I.O. Reversible Oxygen Vacancy Generation on Pure CeO2 Nanorods Evaluated by in Situ Raman Spectroscopy. J. Phys. Chem. C 2017, 121, 12928–12935. [Google Scholar] [CrossRef]
- Zimou, J.; Nouneh, K.; Hsissou, R.; El-Habib, A.; Gana, L.E.l.; Talbi, A.; Beraich, M.; Lotfi, N.; Addou, M. Structural, Morphological, Optical, and Electrochemical Properties of Co-Doped CeO2 Thin Films. Mater. Sci. Semicond. Process. 2021, 135, 106049–106061. [Google Scholar] [CrossRef]
- Li, L.; Chen, F.; Lu, J.-Q.; Luo, M.-F. Study of Defect Sites in Ce1−xMxO2−δ Solid Solutions Using Raman Spectroscopy. J. Phys. Chem. A 2011, 115, 7972–7977. [Google Scholar] [CrossRef]
- Schilling, C.; Hofmann, A.; Hess, C.; Ganduglia-Pirovano, M.V. Raman Spectra of Polycrystalline CeO2: A Density Functional Theory Study. J. Phys. Chem. C 2017, 121, 20834–20849. [Google Scholar] [CrossRef]
- Bonu, V.; Das, A.; Sardar, M.; Dhara, S.; Tyagi, A.K. Surface Functionalization-Enhanced Magnetism in SnO2 Nanoparticles and Its Correlation to Photoluminescence Properties. J. Mater. Chem. C Mater. 2015, 3, 1261–1267. [Google Scholar] [CrossRef]
- Bortamuly, R.; Konwar, G.; Boruah, P.K.; Das, M.R.; Mahanta, D.; Saikia, P. CeO2-PANI-HCl and CeO2-PANI-PTSA Composites: Synthesis, Characterization, and Utilization as Supercapacitor Electrode Materials. Ionics 2020, 26, 5747–5756. [Google Scholar] [CrossRef]
- Ankita, A.; Chahal, S.; Singh, S.; Kumar, S.; Kumar, P. Europium-Doped Cerium Oxide Nanoparticles: Investigating Oxygen Vacancies and Their Role in Enhanced Photocatalytic and Magnetic Properties. Environ. Sci. Pollut. Res. Int. 2024, 31, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Idriss, H. On the Wrong Assignment of the XPS O1s Signal at 531–532 EV Attributed to Oxygen Vacancies in Photo- and Electro-Catalysts for Water Splitting and Other Materials Applications. Surf. Sci. 2021, 712, 121894–121900. [Google Scholar] [CrossRef]
- Morgan, D.J. Photoelectron Spectroscopy of Ceria: Reduction, Quantification and the Myth of the Vacancy Peak in XPS Analysis. Surf. Interface Anal. 2023, 55, 845–850. [Google Scholar] [CrossRef]
- Ahmadizadeh, N.; Najafisayar, P. The Effects of Electrodeposition Parameters on the Wetting Behavior of Ceria Coatings. Ceram. Int. 2020, 46, 19583–19592. [Google Scholar] [CrossRef]
- Qian, L.; Xu, F.; Voisey, K.T.; Nekouie, V.; Zhou, Z.; Silberschmidt, V.V.; Hou, X. Incorporation and Evolution of ZrO2 Nano-Particles in Pt-Modified Aluminide Coating for High Temperature Applications. Surf. Coat. Technol. 2017, 311, 238–247. [Google Scholar] [CrossRef]
- Mao, J.; Duan, X.; Yao, A. Influence of Sodium Dodecyl Sulfate on the Microstructure and Electrochromic Performance of an Electrodeposited Nickel Oxide Film. Aust. J. Chem. 2019, 72, 957–963. [Google Scholar] [CrossRef]
- André, R.F.; Rousse, G.; Sassoye, C.; Avdeev, M.; Lassalle-Kaiser, B.; Baptiste, B.; Carenco, S. From Ce(OH)3 to Nanoscaled CeO2: Identification and Crystal Structure of a Cerium Oxyhydroxide Intermediate Phase. Chem. Mater. 2023, 35, 5040–5048. [Google Scholar] [CrossRef]
- Choudhury, B.; Chetri, P.; Choudhury, A. Annealing Temperature and Oxygen-Vacancy-Dependent Variation of Lattice Strain, Band Gap and Luminescence Properties of CeO2 Nanoparticles. J. Exp. Nanosci. 2015, 10, 103–114. [Google Scholar] [CrossRef]
- Shirzad Choubari, M.; Mazloom, J.; Ghodsi, F.E. Supercapacitive Properties, Optical Band Gap, and Photoluminescence of CeO2–ZnO Nanocomposites Prepared by Eco-Friendly Green and Citrate Sol-Gel Methods: A Comparative Study. Ceram. Int. 2022, 48, 21385–21395. [Google Scholar] [CrossRef]
- Pelli Cresi, J.S.; Di Mario, L.; Catone, D.; Martelli, F.; Paladini, A.; Turchini, S.; D’Addato, S.; Luches, P.; O’Keeffe, P. Ultrafast Formation of Small Polarons and the Optical Gap in CeO2. J. Phys. Chem. Lett. 2020, 11, 5686–5691. [Google Scholar] [CrossRef] [PubMed]
- Isik, M.; Delice, S.; Gasanly, N.M. Temperature Dependence of Band Gap of CeO2 Nanoparticle Photocatalysts. Phys. E Low Dimens. Syst. Nanostruct. 2023, 150, 115712–115717. [Google Scholar] [CrossRef]
- Tang, J.; Han, Z.; Zuo, Y.; Tang, Y. A Corrosion Resistant Cerium Oxide Based Coating on Aluminum Alloy 2024 Prepared by Brush Plating. Appl. Surf. Sci. 2011, 257, 2806–2812. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, S.; Li, L.; Gu, P.; Wen, T.; Khan, A.; Li, S.; Li, B.; Wang, S.; Wang, X. Enhanced Visible-Light-Induced Photoactivity of Type-II CeO2/g-C3N4 Nanosheet toward Organic Pollutants Degradation. ACS Sustain. Chem. Eng. 2019, 7, 9699–9708. [Google Scholar] [CrossRef]
- Rani, N.; Ahlawat, R.; Goswami, B. Annealing Effect on Bandgap Energy and Photocatalytic Properties of CeO2–SiO2 Nanocomposite Prepared by Sol-Gel Technique. Mater. Chem. Phys. 2020, 241, 122401–122411. [Google Scholar] [CrossRef]
- Shabalina, A.V.; Gotovtseva, E.Y.; Belik, Y.A.; Kuzmin, S.M.; Kharlamova, T.S.; Kulinich, S.A.; Svetlichnyi, V.A.; Vodyankina, O.V. Electrochemical Study of Semiconductor Properties for Bismuth Silicate-Based Photocatalysts Obtained via Hydro-/Solvothermal Approach. Materials 2022, 15, 4099. [Google Scholar] [CrossRef]
- Du, J.; Chen, W.; Wu, G.; Song, Y.; Dong, X.; Li, G.; Fang, J.; Wei, W.; Sun, Y. Evoked Methane Photocatalytic Conversion to C2 Oxygenates over Ceria with Oxygen Vacancy. Catalysts 2020, 10, 196. [Google Scholar] [CrossRef]
- Jiang, H.; Li, X.; Chen, S.; Wang, H.; Huo, P. G-C3N4 Quantum Dots-Modified Mesoporous CeO2 Composite Photocatalyst for Enhanced CO2 Photoreduction. J. Mater. Sci. Mater. Electron. 2020, 31, 20495–20512. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, Q.; Lv, S.; Fu, X.; Wen, J.; Liu, X. Enhanced Visible-Light Photocatalytic Activity of Ag QDs Anchored on CeO2 Nanosheets with a Carbon Coating. Nanomaterials 2019, 9, 1643. [Google Scholar] [CrossRef]
- Tian, N.; Huang, H.; Liu, C.; Dong, F.; Zhang, T.; Du, X.; Yu, S.; Zhang, Y. In Situ Co-Pyrolysis Fabrication of CeO2/g-C3N4 n–n Type Heterojunction for Synchronously Promoting Photo-Induced Oxidation and Reduction Properties. J. Mater. Chem. A 2015, 3, 17120–17129. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, D.; Zhang, P.; Liang, C.; Liu, P.; Tong, Y. Facile Synthesis of Free-Standing CeO2 Nanorods for Photoelectrochemical Applications. Chem. Commun. 2010, 46, 7721–7723. [Google Scholar] [CrossRef]
- Sridharan, M.; Kamaraj, P.; Vennila, R.; Huh, Y.S.; Arthanareeswari, M. Bio-Inspired Construction of Melanin-like Polydopamine-Coated CeO2 as a High-Performance Visible-Light-Driven Photocatalyst for Hydrogen Production. New J. Chem. 2020, 44, 15223–15234. [Google Scholar] [CrossRef]
- Mehdi, M.; Karimi, H.; Ghaedi, M. CeO2 Nanofibers-CdS Nanostructures n–n Junction with Enhanced Visible-Light Photocatalytic Activity. Arab. J. Chem. 2020, 13, 7583–7597. [Google Scholar] [CrossRef]
- Sivula, K.; Sekar, A.; Moreno-Naranjo, J.M.; Liu, Y.; Yum, J.H.; Darwich, B.P.; Cho, H.H.; Guijarro, N.; Yao, L. Bulk Heterojunction Organic Semiconductor Photoanodes: Tuning Energy Levels to Optimize Electron Injection. ACS Appl. Mater. Interf. 2022, 14, 8191–8198. [Google Scholar]
- Bredar, A.R.C.; Chown, A.L.; Burton, A.R.; Farnum, B.H. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Appl. Energy Mater. 2020, 3, 66–98. [Google Scholar] [CrossRef]
- Anantha, M.S.; Dinesh, A.; Kundu, M.; Rani, M.; Venkatesh, K.; Raghu, M.S.; Yogesh Kumar, K.; Muralidhara, H.B. Single Step Assemble of Cerium Oxide Embellished on Layered Graphene Oxide: An Efficacious Electrode for Supercapacitors and Hydrogen Evolution Reaction. Mater. Sci. Eng. B 2022, 284, 115924–115935. [Google Scholar] [CrossRef]
- Makarava, I.; Esmaeili, M.; Kharytonau, D.S.; Pelcastre, L.; Ryl, J.; Bilesan, M.R.; Vuorinen, E.; Repo, E. Influence of CeO2 and TiO2 Particles on Physicochemical Properties of Composite Nickel Coatings Electrodeposited at Ambient Temperature. Materials 2022, 15, 5550. [Google Scholar] [CrossRef]
- Brug, G.J.; GVan Den Eeden, A.L.; Sluyters-rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Zamiri, R.; Ahangar, H.A.; Kaushal, A.; Zakaria, A.; Zamiri, G.; Tobaldi, D.; Ferreira, J.M.F. Dielectrical Properties of CeO2 Nanoparticles at Different Temperatures. PLoS ONE 2015, 10, e0122989. [Google Scholar]
- Lu, Y.; Mi, Y.; Li, J.; Qi, F.; Yan, S.; Dong, W. Recent Progress in Semiconductor-Ionic Conductor Nanomaterial as a Membrane for Low-Temperature Solid Oxide Fuel Cells. Nanomaterials 2021, 11, 2290. [Google Scholar] [CrossRef] [PubMed]
- Korjenic, A.; Raja, K.S. Electrochemical Stability of Fluorine Doped Tin Oxide (FTO) Coating at Different PH Conditions. J. Electrochem. Soc. 2019, 166, 169–184. [Google Scholar] [CrossRef]
- Đorđević, M.P.; Vukoje, I.; Lazić, V.; Đorđević, V.; Sredojević, D.; Dostanić, J.; Lončarević, D.; Ahrenkiel, S.P.; Belić, M.R.; Nedeljković, J.M. Electronic Structure of Surface Complexes between CeO2 and Benzene Derivatives: A Comparative Experimental and DFT Study. Mater. Chem. Phys. 2019, 236, 121816–121824. [Google Scholar] [CrossRef]
- Shi, L.; Zhuo, S.; Abulikemu, M.; Mettela, G.; Palaniselvam, T.; Rasul, S.; Tang, B.; Yan, B.; Saleh, N.B.; Wang, P. Annealing Temperature Effects on Photoelectrochemical Performance of Bismuth Vanadate Thin Film Photoelectrodes. RSC Adv. 2018, 8, 29179–29188. [Google Scholar] [CrossRef] [PubMed]
Temperature (°C) | FWMH (°) | Crystallite Size, D (nm) | Lattice Parameter, a (A°) | ACe3+/ACe4+ |
---|---|---|---|---|
200 | 2.25 | 4.41 | 5.43 | 0.072 |
300 | 1.74 | 5.05 | 5.43 | 0.047 |
400 | 1.40 | 6.22 | 5.42 | 0.024 |
500 | 1.10 | 7.40 | 5.42 | 0.015 |
600 | 0.78 | 9.74 | 5.40 | 0.0090 |
T(°C) | Eg (eV) | ECB (eV) | EVB (eV) |
---|---|---|---|
200 | 2.96 | −0.42 | 2.54 |
300 | 2.98 | −0.43 | 2.55 |
400 | 3.02 | −0.45 | 2.57 |
500 | 3.05 | −0.46 | 2.59 |
600 | 3.12 | −0.50 | 2.62 |
T (°C) | Rs (W/cm2) | Rct (W/ cm2) | χ2 | EFB vs. NHE (V) | ND (cm−3) |
---|---|---|---|---|---|
200 | 37.5 | 4385 | 0.003 | −0.48 | 5.9 × 1020 |
300 | 39.5 | 3715 | 0.004 | −0.30 | 5.5 × 1020 |
400 | 36.9 | 3347 | 0.003 | −0.11 | 7.8 × 1020 |
500 | 36.5 | 1813 | 0.004 | 0.013 | 5.9 × 1020 |
600 | 37.3 | 823 | 0.002 | 0.12 | 7.5 × 1020 |
T(°C) | CPE (mF∙s(n−1)) | n | Ceff 10−5 (F) |
---|---|---|---|
200 | 18.1 | 0.887 | 1.31 |
300 | 18.3 | 0.855 | 1.15 |
400 | 20.9 | 0.854 | 1.32 |
500 | 21.0 | 0.847 | 1.16 |
600 | 16.6 | 0.887 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Lozano, A.E.; Lanza, M.R.V.; Ortiz, P.; Cortés, M.T. Photoelectrochemical and Structural Insights of Electrodeposited CeO2 Photoanodes. Surfaces 2024, 7, 898-919. https://doi.org/10.3390/surfaces7040059
Molina-Lozano AE, Lanza MRV, Ortiz P, Cortés MT. Photoelectrochemical and Structural Insights of Electrodeposited CeO2 Photoanodes. Surfaces. 2024; 7(4):898-919. https://doi.org/10.3390/surfaces7040059
Chicago/Turabian StyleMolina-Lozano, Alberto E., Marcos R. V. Lanza, Pablo Ortiz, and María T. Cortés. 2024. "Photoelectrochemical and Structural Insights of Electrodeposited CeO2 Photoanodes" Surfaces 7, no. 4: 898-919. https://doi.org/10.3390/surfaces7040059
APA StyleMolina-Lozano, A. E., Lanza, M. R. V., Ortiz, P., & Cortés, M. T. (2024). Photoelectrochemical and Structural Insights of Electrodeposited CeO2 Photoanodes. Surfaces, 7(4), 898-919. https://doi.org/10.3390/surfaces7040059