Nanoscale Organic Contaminant Detection at the Surface Using Nonlinear Bond Model
Abstract
:1. Introduction
2. Methods
2.1. Nonlinear Optics Approach
2.2. Bond Vector Model
2.3. Molecular Docking Simulation
3. Results and Discussion
3.1. Susceptibility Tensor and Group Theory
3.2. SBHM Simulation
3.2.1. MG/Si(001)
3.2.2. Rhodamine B/Si(001)
3.2.3. SBHM Fitting Versus Experimental Data Error Analysis
3.2.4. Molecular Docking Simulation of Rhodamine B Adsorbate Using a GO Layer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sudova, E.; Machova, J.; Svobodova, Z.; Vesely, T. Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: A review. Vet. Med. 2007, 52, 527–539. [Google Scholar] [CrossRef]
- Hameed, B.H.; El-Khaiary, M.I. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. J. Hazard. Mater. 2008, 154, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Valadez-Renteria, E.; Oliva, J.; Rodriguez-Gonzalez, V. A sustainable and green chlorophyll/TiO2:W composite supported on recycled plastic bottle caps for the complete removal of Rhodamine B contaminant from drinking water. J. Environ. Manag. 2022, 315, 115204. [Google Scholar] [CrossRef] [PubMed]
- Oladoye, P.O.; Kadhom, M.; Khan, I.; Hama Aziz, K.H.; Alli, Y.A. Advancements in adsorption and photodegradation technologies for Rhodamine B dye wastewater treatment: Fundamentals, applications, and future directions. Green Chem. Eng. 2024, 5, 440–460. [Google Scholar] [CrossRef]
- Boyd, R.W. Chapter 1—The Nonlinear Optical Susceptibility. In Nonlinear Optics, 4th ed.; Boyd, R.W., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–64. [Google Scholar] [CrossRef]
- Alejo-Molina, A.; Hardhienata, H.; Hingerl, K. Simplified bond-hyperpolarizability model of second harmonic generation, group theory, and Neumann’s principle. J. Opt. Soc. Am. B 2014, 31, 526–533. [Google Scholar] [CrossRef]
- Hardhienata, H.; Prylepa, A.; Stifter, D.; Hingerl, K. Simplified bond-hyperpolarizability model of second-harmonic-generation in Si(111): Theory and experiment. J. Phys. Conf. 2013, 423, 012046. [Google Scholar] [CrossRef]
- Powell, G.; Wang, J.F.; Aspnes, D. Simplified bond-hyperpolarizability model of second harmonic generation. Phys. Rev. B 2002, 65, 205320. [Google Scholar] [CrossRef]
- Gassin, P.M.; Martin-Gassin, G.; Prelot, B.; Zajac, J. How to distinguish various components of the SHG signal recorded from the solid/liquid interface? Chem. Phys. Lett. 2016, 664, 50–55. [Google Scholar] [CrossRef]
- Kikteva, T.; Star, D.; Leach, G.W. Optical Second Harmonic Generation Study of Malachite Green Orientation and Order at the Fused-Silica/Air Interface. J. Phys. Chem. B 2000, 104, 2860–2867. [Google Scholar] [CrossRef]
- Reitböck, C.; Stifter, D.; Alejo-Molina, A.; Hingerl, K.; Hardhienata, H. Bulk quadrupole and interface dipole contribution for second harmonic generation in Si(111). J. Opt. 2016, 18, 035501. [Google Scholar] [CrossRef]
- Bloembergen, N.; Chang, R.K.; Lee, C.H. Second-Harmonic Generation of Light in Reflection from Media with Inversion Symmetry. Phys. Rev. Lett. 1966, 16, 986–989. [Google Scholar] [CrossRef]
- Guidotti, D.; Driscoll, T.; Gerritsen, H. Second harmonic generation in centro-symmetric semiconductors. Solid State Commun. 1983, 46, 337–340. [Google Scholar] [CrossRef]
- Sipe, J.E.; Moss, D.J.; van Driel, H.M. Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Phys. Rev. B 1987, 35, 1129–1141. [Google Scholar] [CrossRef] [PubMed]
- Lüpke, G. Characterization of semiconductor interfaces by second-harmonic generation. Surf. Sci. Rep. 1999, 35, 75–161. [Google Scholar] [CrossRef]
- Hardhienata, H.; Priyadi, I.; Alatas, H.; Birowosuto, M.D.; Coquet, P. Bond model of second-harmonic generation in wurtzite ZnO(0002) structures with twin boundaries. J. Opt. Soc. Am. B 2019, 36, 1127–1137. [Google Scholar] [CrossRef]
- Morgenthaler, M.J.E.; Meech, S.R. Picosecond Dynamics of Adsorbed Dyes: A Time-Resolved Surface Second-Harmonic Generation Study of Rhodamine 110 on Silica. J. Phys. Chem. 1996, 100, 3323–3329. [Google Scholar] [CrossRef]
- Sahar, J.; Naeem, A.; Farooq, M.; Shah Zareen, F.; Sherazi, S. Kinetic studies of graphene oxide towards the removal of rhodamine B and congo red. Int. J. Environ. Anal. Chem. 2021, 101, 1258–1272. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Abdelwahab, M.S.; Ibrahim, G.A. Surface functionalization of magnetic graphene oxide@bentonite with α-amylase enzyme as a novel bionanosorbent for effective removal of Rhodamine B and Auramine O dyes. Mater. Chem. Phys. 2023, 301, 127638. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, F.; Zhang, Y.; Yang, H.; Lin, D.; He, J.; Liao, C.; Weng, X.; Liu, L.; Wang, Y.; et al. Super-Resolution Second-Harmonic Generation Imaging with Multifocal Structured Illumination Microscopy. Nano Lett. 2023, 23, 7975–7982. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Tamoto, R.; Iwasa, A.; Mimura, M.; Taniguchi, S.; Hasegawa, T.; Sudo, T.; Mizuno, H.; Kikuta, J.; Onoyama, I.; et al. Nonlinear Optics with Near-Infrared Excitation Enable Real-Time Quantitative Diagnosis of Human Cervical Cancers. Cancer Res. 2020, 80, 3745–3754. [Google Scholar] [CrossRef] [PubMed]
- Aspnes, D.E. Bond models in linear and nonlinear optics. Phys. Status Solidi A 2010, 247, 1873–1880. [Google Scholar] [CrossRef]
- Ahyad, M.; Hardhienata, H.; Hasdeo, E.H.; Wella, S.A.; Handayasari, F.; Alatas, H.; Birowosuto, M.D. A Novel Sensing Method to Detect Malachite Green Contaminant on Silicon Substrate Using Nonlinear Optics. Micromachines 2024, 15, 1227. [Google Scholar] [CrossRef] [PubMed]
- Higgins, D.A.; Byerly, S.K.; Abrams, M.B.; Corn, R.M. Second harmonic generation studies of methylene blue orientation at silica surfaces. J. Phys. Chem. 1991, 95, 6984–6990. [Google Scholar] [CrossRef]
- Kikteva, T.; Star, D.; Zhao, Z.; Baisley, T.L.; Leach, G.W. Molecular Orientation, Aggregation, and Order in Rhodamine Films at the Fused Silica/Air Interface. J. Phys. Chem. B. 1999, 103, 1124–1133. [Google Scholar] [CrossRef]
- Tsukanova, V.; Lavoie, H.; Harata, A.; Ogawa, T.; Salesse, C. Microscopic Organization of Long-Chain Rhodamine Molecules in Monolayers at the Air/Water Interface. J. Phys. Chem. B. 2002, 106, 4203–4213. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Abagyan, R.; Totrov, M.; Kuznetsov, D. ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 1994, 15, 488–506. [Google Scholar] [CrossRef]
- Powell, R. Symmetry, Group Theory, and the Physical Properties of Crystals; Springer: Berlin/Heidelberg, Germany, 2010; Volume 824, pp. 1–230. [Google Scholar] [CrossRef]
- Eckenrode, H.M.; Jen, S.h.; Han, J.; Yeh, A.g.; Dai, H.l. Adsorption of a Cationic Dye Molecule on Polystyrene Microspheres in Colloids: Effect of Surface Charge and Composition Probed by Second Harmonic Generation. J. Phys. Chem. B 2005, 109, 4646–4653. [Google Scholar] [CrossRef]
- Jannis, D.; Gauquelin, N.; Guzzinati, G. Wide field of view crystal orientation mapping of layered materials. arXiv 2020, arXiv:2011.01875. [Google Scholar] [CrossRef]
- Carr, A.J.; Kumal, R.R.; Bu, W. Effects of ion adsorption on graphene oxide films and interfacial water structure: A molecular-scale description. Carbon 2022, 195, 131–140. [Google Scholar] [CrossRef]
- Zhou, W.; Hua, J.; Liu, N. Inversion symmetry-broken tetralayer graphene probed by second-harmonic generation. Nano Lett. 2024, 24, 8378–8385. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.J.; Lee, S.E.; Uysal, A. Ion and water adsorption to graphene and graphene oxide surfaces. Nanoscale 2023, 15, 14319–14337. [Google Scholar] [CrossRef] [PubMed]
- Autere, A.; Jussila, H.; Dai, Y. Nonlinear optics with 2D layered materials. Adv. Mater. 2018, 30, 1705963. [Google Scholar] [CrossRef] [PubMed]
- Nurrohman, D.T.; Chiu, N.F. A Review of Graphene-Based Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Biosensors: Current Status and Future Prospects. Nanomaterials 2021, 11, 216. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guo, Y.; Jia, Z.; Ma, H.; Liu, C.; Liu, Z.; Shi, Q.; Ren, B.; Li, L.; Zhang, X.; et al. Fabrication of graphene oxide/polydopamine adsorptive membrane by stepwise in-situ growth for removal of rhodamine B from water. Desalination 2021, 516, 115220. [Google Scholar] [CrossRef]
- Gunawardana, M.K.; Disanayaka, H.N.; Fernando, M.S.; de Silva, K.N.; de Silva, R.M. Development of graphene oxide-based polypyrrole nanocomposite for effective removal of anionic and cationic dyes from water. Results Chem. 2023, 6, 101079. [Google Scholar] [CrossRef]
- Molla, A.; Li, Y.; Mandal, B.; Kang, S.G.; Hur, S.H.; Chung, J.S. Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis. Appl. Surf. Sci. 2019, 464, 170–177. [Google Scholar] [CrossRef]
- Liu, X.; Guo, Y.; Zhang, C.; Huang, X.; Ma, K.; Zhang, Y. Preparation of graphene oxide/4A molecular sieve composite and evaluation of adsorption performance for Rhodamine B. Sep. Purif. Technol. 2022, 286, 120400. [Google Scholar] [CrossRef]
Concentration MG (mM) | ||
---|---|---|
0.0 | 5 | 5 |
0.001 | 6.775 | 5 |
0.0025 | 8.425 | 5 |
0.004 | 9.461 | 5 |
0.01 | 11.396 | 5 |
0.02 | 12.478 | 5 |
0.03 | 12.924 | 5 |
Color Symbol | Type of Interaction | Number of Interactions | Distances (Å) |
---|---|---|---|
Black (Lavender) | Alkyl | 1 | 4.04 |
Pink | -Alkyl | 5 | 4.48, 4.90, 4.32, 5.10, 4.98 |
Purple | -Sigma | 3 | 3.47, 3.67, 3.81 |
Red | - T-shaped | 3 | 4.87, 4.87, 4.58 |
Magenta | - Stacked | 36 | 4.08, 4.09, 4.91, 5.53, 5.09, 3.75, 4.42, 3.86, 3.90, 4.14, 4.96, 5.51, 5.14, 4.63, 4.32, 5.51, 3.97, 4.60, 5.30, 5.03, 5.41, 5.81, 5.24, 5.38, 4.60, 5.10, 3.99, 4.74, 5.07, 4.53, 4.83, 5.67, 5.46, 5.36, 5.04, 5.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardhienata, H.; Ahyad, M.; Nabilah, F.; Alatas, H.; Handayasari, F.; Kartono, A.; Sumaryada, T.; Birowosuto, M.D. Nanoscale Organic Contaminant Detection at the Surface Using Nonlinear Bond Model. Surfaces 2025, 8, 11. https://doi.org/10.3390/surfaces8010011
Hardhienata H, Ahyad M, Nabilah F, Alatas H, Handayasari F, Kartono A, Sumaryada T, Birowosuto MD. Nanoscale Organic Contaminant Detection at the Surface Using Nonlinear Bond Model. Surfaces. 2025; 8(1):11. https://doi.org/10.3390/surfaces8010011
Chicago/Turabian StyleHardhienata, Hendradi, Muhammad Ahyad, Fasya Nabilah, Husin Alatas, Faridah Handayasari, Agus Kartono, Tony Sumaryada, and Muhammad D. Birowosuto. 2025. "Nanoscale Organic Contaminant Detection at the Surface Using Nonlinear Bond Model" Surfaces 8, no. 1: 11. https://doi.org/10.3390/surfaces8010011
APA StyleHardhienata, H., Ahyad, M., Nabilah, F., Alatas, H., Handayasari, F., Kartono, A., Sumaryada, T., & Birowosuto, M. D. (2025). Nanoscale Organic Contaminant Detection at the Surface Using Nonlinear Bond Model. Surfaces, 8(1), 11. https://doi.org/10.3390/surfaces8010011