Enhanced Photocatalytic Degradation of Cyanide in Mining Wastewater Using a ZnO-BiOI Heterojunction Catalyst
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Heterojunction Synthesis
2.3. Heterojunction Characterization
2.4. Photocatalytic Degradation
Analytical Methods
3. Results and Discussion
3.1. Structural, Morphological, and Compositional Analyses
3.2. Photocatalytic Activity
3.3. Impact of the Photocatalyst Mass on the Degradation of Cyanide
3.4. Impact of Temperature on the Degradation of Cyanide
3.5. Impact of Concentration on the Degradation of Cyanide
3.6. Kinetic Study
3.7. Mechanisms Behind the Enhanced Photocatalytic Activity of the ZnO-BiOI Heterojunction
- The ZnO-BiOI system forms a Type-II heterojunction, which facilitates efficient charge separation. In this structure, the following points apply:
- BiOI has a narrow bandgap that allows it to absorb visible light.
- ZnO, with its wider bandgap, absorbs UV light. Upon irradiation, electrons in the conduction band (CB) of BiOI can migrate to the conduction band of ZnO due to the band alignment, while holes remain in the valence band (VB) of BiOI. This spatial separation reduces the recombination rate of photogenerated electron–hole pairs, enhancing the photocatalytic efficiency.
- The presence of BiOI expands the absorption spectrum of ZnO from the UV to the visible region due to the narrow bandgap of BiOI. This allows the heterojunction to utilize a broader range of the solar spectrum, increasing the generation of electron–hole pairs under visible light irradiation.
- The heterojunction interface promotes efficient charge transfer across ZnO and BiOI, thereby delaying recombination. The migration of electrons from BiOI to ZnO enables the simultaneous accumulation of holes on BiOI’s VB, where oxidation reactions can occur, and electrons in ZnO’s CB, where reduction reactions proceed [44].
- Strong oxidation and reduction potential. The CB of ZnO has a highly negative potential, which facilitates the reduction of molecular oxygen to reactive oxygen species (e.g., superoxide radicals, •O2−). The VB of BiOI, on the other hand, has a relatively positive potential, enabling the generation of hydroxyl radicals (•OH) through water oxidation (Ashiegbu et al., 2022). These reactive oxygen species (ROS) play a crucial role in breaking down organic pollutants and other contaminants in the water [47].
- The coupling of ZnO and BiOI creates a favorable energy band alignment that enhances the generation of photogenerated electron–hole pairs under light exposure [44], providing sustained photocatalytic activity over time.
3.8. Suggested Cyanide Degradation Pathway
- Initial Oxidation of Cyanide (CN−): cyanide reacts with hydroxyl radicals, leading to the formation of cyanate (CNO−) as a primary intermediate:
- Further Degradation of Cyanate: cyanate undergoes further oxidation to produce bicarbonate (HCO3−), ammonia (NH3), and other small nitrogen-containing species such as nitrate (NO3−):
- Formation of Nitrate (NO3−): ammonia (NH3) can be subsequently oxidized to nitrate under prolonged irradiation, completing the mineralization process:
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, N.; Balomajumder, C. Simultaneous biosorption and bioaccumulation of phenol and cyanide using coconut shell activated carbon immobilized Pseudomonas putida (MTCC 1194). J. Environ. Chem. Eng. 2016, 4, 1604–1614. [Google Scholar] [CrossRef]
- Zargoosh, K.; Kondori, S.; Dinari, M.; Mallakpour, S. Synthesis of layered double hydroxides containing a biodegradable amino acid derivative and their application for effective removal of cyanide from industrial wastes. Ind. Eng. Chem. Res. 2015, 54, 1093–1102. [Google Scholar] [CrossRef]
- Kuyucak, N.; Akcil, A. Cyanide and removal options from effluents in gold mining and metallurgical processes. Min. Eng. 2013, 50, 13–29. [Google Scholar] [CrossRef]
- Behnamfard, A.; Salarirad, M.M. Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. J. Hazard. Mater. 2009, 170, 127–133. [Google Scholar] [CrossRef]
- Pala, A.; Politi, R.R.; Kurşun, G.; Erol, M.; Bakal, F.; Öner, G.; Çelik, E. Photocatalytic degradation of cyanide in wastewater using new generated nano-thin film photocatalyst. Surf. Coat. Technol. 2015, 271, 207–216. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, Y.; Huang, Y.; Jia, Y.; Chen, L. Enhanced photocatalytic oxidation degradability for real cyanide wastewater by designing photocatalyst GO/TiO2/ZSM-5: Performance and mechanism research. J. Chem. Eng. 2022, 428, 131257. [Google Scholar] [CrossRef]
- Alvillo-Rivera, A.; Garrido-Hoyos, S.; Buitron, G.; Thangarasu-Sarasvathi, P.; Rosano-Ortega, G. Biological treatment for the degradation of cyanide: A review. J. Mater. Res. Technol. 2021, 12, 1418–1433. [Google Scholar] [CrossRef]
- Gurbuz, F.; Ciftci, H.; Akcil, A. Biodegradation of cyanide containing effluents by Scenedesmus obliquus. J. Hazard. Mater. 2009, 162, 74–79. [Google Scholar] [CrossRef]
- Mamelkina, M.A.; Herraiz-Carboné, M.; Cotillas, S.; Lacasa, E.; Sáez, C.; Tuunila, R.; Sillanpää, M.; Häkkinen, A.; Rodrigo, M.A. Treatment of mining wastewater polluted with cyanide by coagulation processes: A mechanistic study. Sep. Purif. Technol. 2020, 237, 116345. [Google Scholar] [CrossRef]
- Stander, G.J.; Henzen, M.R.; Funke, J.W. The disposal of polluted effluents from Mining, Metallurgical and Metal Finishing Industries, their effects on receiving water and remedial measures. J. S. Afr. Inst. Min. Met. 1970, 1970, 95–103. [Google Scholar]
- Fashola, M.O.; Ngole-Jeme, V.M.; Babalola, O.O. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. Int. J. Environ. Res. Public Health 2016, 26, 1047. [Google Scholar] [CrossRef] [PubMed]
- Chetty, S.; Pillay, L.; Humphries, M.S. Gold mining’s toxic legacy: Pollutant transport and accumulation in the Klip River catchment, Johannesburg. S. Afr. J. Sci. 2021, 117, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Perez, B.F. Development of a New Method for the Removal of Cyanide from Mine Wastewater. Ph.D. Thesis, Universidad de Oviedo, Oviedo, Spain, 2007. ISBN 978-84-694-5579-1. Available online: http://www.tesisenred.net/handle/10803/31849 (accessed on 10 August 2024).
- Baeissa, E.S. Synthesis and characterization of sulfur-titanium dioxide nanocomposites for photocatalytic oxidation of cyanide using visible light irradiation. Chin. J. Catal. 2015, 36, 698–704. [Google Scholar] [CrossRef]
- Pattanayak, D.S.; Mishra, J.; Nanda, J.; Sahoo, P.K.; Rahul, K.R.; Sahoo, N.K. Photocatalytic degradation of cyanide using polyurethane foam immobilized Fe-TCPP-S-TiO2-rGO nano-composite. J. Environ. Manag. 2021, 297, 113312. [Google Scholar] [CrossRef]
- Pirhashemi, M.; Habibi-Yangjeh, A.; Pouran, S.R. Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 2018, 62, 1–25. [Google Scholar] [CrossRef]
- Swaminathan, M.; Muruganandham, M.; Sillanpaa, M. Advanced Oxidation Processes for Wastewater Treatment. Int. J. Photoenergy 2013, 2013, 683682. [Google Scholar] [CrossRef]
- Ashiegbu, D.C.; Potgieter, J.H.; Kuvarega, T.A. Synthesis of Photocatalysts/Heterojunctions for Abatement of a Specific Pollutant in Aqueous Media. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2022. Available online: https://wiredspace.wits.ac.za/server/api/core/bitstreams/56992116-c836-4c92-8200-6735ae0f53c2/content (accessed on 15 June 2024).
- Ashiegbu, D.C.; Potgieter, H. Photocatalytic mediated destruction of 2-chlorobiphenyl by a ZnO-[10%]BiOI p-n heterojunction: Effect of some process parameters. Int. J. Environ. Sci. Technol. 2024, 21, 4119–4132. [Google Scholar] [CrossRef]
- Ashiegbu, D.C.; Potgieter, J.H. ZnO-based heterojunction catalysts for the photocatalytic degradation of methyl orange dye. Heliyon 2023, 9, e20674. [Google Scholar] [CrossRef]
- Zulkiflee, A.; Khan, M.M.; Harunsani, M.H. Bismuth oxyhalides: Recent progress and its applications in photocatalysis, hydrogen production, antibacterial studies, and sensors. Mater. Sci. Semicond. Process 2023, 163, 107547. [Google Scholar] [CrossRef]
- Long, D.; Yu, X.; Li, W.; Ma, S. One bismuth three benefits: An overview of bismuth-based photocatalysts for energy conversion, environmental treatment and biomedical applications. Mater. Adv. 2025, advance. [Google Scholar] [CrossRef]
- Castillo-Cabrera, G.X.; Espinoza-Montero, P.J.; Alulema-Pullupaxi, P.; Mora, J.R.; Villacis-Garcia, M.H. Bismuth Oxyhalide-Based Materials (BiOX: X = Cl, Br, I) and Their Application in Photoelectrocatalytic Degradation of Organic Pollutants in Water: A Review. Front. Chem. 2022, 10, 900622. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, X.; Wang, W.; Cong, X.; Qin, H.; Guo, F. BiOI/ZnO Heterojunction for Increased Photodegradation of Metronidazole under Visible Light Irradiation. ChemistrySelect 2023, 8, e202300739. [Google Scholar] [CrossRef]
- Xiao, W.; Su, Y.; Luo, J.; Jiang, L.; Wu, X.; Liu, Z.; Pang, H.; Zhang, Q.; Zhang, P. Flower-like hierarchical architecture of BiOI/ZnO p-n junction composites with high-efficient visible-light photodegradation activities. Solid. State Sci. 2020, 108, 106432. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Yang, M.; Zhao, Y.; Jiang, B.; Wang, H. Flower-like ZnO/BiOI p–n heterojunction composite membrane composed of nanosheets for enhanced photodegradation of water-soluble pollutant and high efficiency oil–water emulsion separation. Appl. Surf. Sci. 2025, 680, 161460. [Google Scholar] [CrossRef]
- Wang, J.; Xie, J.; Chen, M.; Zheng, S.; Tan, H.; Shaohui, Y.S.; Chen, Y.; Huang, X.; Gao, W. Core-double-shell structure and heterojunction in CdS/SnS2 boosting fast carrier separation for ultrasensitive detection of carbohydrate antigen 125. Sens. Actuators B 2023, 380, 133352. [Google Scholar] [CrossRef]
- Jimenez-Velasco, C.; Nava-Alonso, F.; Uribe-Salas, A.; Alonso-Gonzalez, O. Thermodynamic analysis of free cyanide determination by silver nitrate titration in copper bearing solutions. Can. Met. Q. 2014, 53, 207–212. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, J.; Yu, P.; Zhang, B.; Ma, M. Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity. Beilstein J. Nanotechnol. 2018, 9, 789–800. [Google Scholar] [CrossRef]
- Zhang, C.; Fei, W.; Wang, H.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. p-n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water. J. Hazard. Mater. 2020, 399, 123109. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, H.; Chen, X.; Li, S.; Xie, T.; Wang, D.; Lin, Y. Enhanced photocatalytic degradation of phenol and photogenerated charges transfer property over BiOI-loaded ZnO composites. J. Colloid. Interface Sci. 2017, 494, 130–138. [Google Scholar] [CrossRef]
- Mediavilla, J.J.V.; Perez, B.F.; De Cordoba, M.C.F.; Espina, J.A.; Ania, C.O. Photochemical degradation of cyanides and thiocyanates from an industrial wastewater. Molecules 2019, 24, 1373. [Google Scholar] [CrossRef]
- Jaramillo-Fierro, X.; León, R. Effect of Doping TiO2 NPs with Lanthanides (La, Ce and Eu) on the Adsorption and Photodegradation of Cyanide—A Comparative Study. Nanomaterials 2023, 13, 1068. [Google Scholar] [CrossRef] [PubMed]
- Lubis, S.; Sheilatina, D.; Sitompul, D.W. Photocatalytic degradation of indigo carmine dye using α-Fe2O3/bentonite nanocomposite prepared by mechanochemical synthesis. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012142. [Google Scholar] [CrossRef]
- Chen, Y.W.; Hsu, Y.H. Effects of Reaction Temperature on the Photocatalytic Activity of TiO2 with Pd and Cu Cocatalysts. Catalysts 2021, 11, 966. [Google Scholar] [CrossRef]
- Erfan, N.A.; Mahmoud, M.S.; Kim, H.K.; Barakat, N.A.M. Synergistic doping with Ag, CdO, and ZnO to overcome electron-hole recombination in TiO2 photocatalysis for effective water photo splitting reaction. Front. Chem. 2023, 11, 1301172. [Google Scholar] [CrossRef]
- Vincenzo, A.D.; Floriano, M.A. Elucidating the Influence of the Activation Energy on Reaction Rates by Simulations Based on a Simple Particle Model. J. Chem. Educ. 2020, 97, 3630–3637. [Google Scholar] [CrossRef]
- Bretos, I.; Jiménez, R.; Ricote, J.; Calzada, M.L. Photochemistry in the Low-Temperature Processing of Metal Oxide Thin Films by Solution Methods. Chemistry 2020, 26, 9277–9291. [Google Scholar] [CrossRef]
- Svejstrup, T.D.; Chatterjee, A.; Schekin, D.; Wagner, T.; Zach, J.; Johansson, M.J.; Bergonzini, G.; König, B. Effects of Light Intensity and Reaction Temperature on Photoreactions in Commercial Reactors. Chem. Photo Chem. 2021, 5, 808–814. [Google Scholar]
- Mishra, J.; Pattanayak, D.S.; Das, A.A.; Mishra, D.K.; Rath, D.; Sahoo, N.K. Enhanced photocatalytic degradation of cyanide employing Fe-porphyrin sensitizer with hydroxyapatite palladium doped TiO2 nano-composite system. J. Mol. Liq. 2019, 287, 110821. [Google Scholar] [CrossRef]
- Chiang, K.; Amal, R.; Tran, T. Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv. Environ. Res. 2002, 6, 471–485. [Google Scholar] [CrossRef]
- Amaro-Medina, B.M.; Martinez-Luevanos, A.; Soria-Aguilar, M.J.; Sanchez-Castillo, M.A.; Estrada-Flores, S.; Carrillo-Pedroza, F.R. Efficiency of Adsorption and Photodegradation of Composite TiO2/Fe2O3 and Industrial Wastes in Cyanide Removal. Water 2022, 14, 3502. [Google Scholar] [CrossRef]
- Eskandari, P.; Farhadian, M.; Nazar, A.R.S.; Jeon, B.H. Adsorption and Photodegradation Efficiency of TiO2/Fe2O3/PAC and TiO2/Fe2O3/Zeolite Nanophotocatalysts for the Removal of Cyanide. Ind. Eng. Chem. Res. 2019, 58, 2099–2112. [Google Scholar] [CrossRef]
- Ashiegbu, D.C.; Nkhoesa, D.; Erasmus, R.; Potgieter, J.H. Efficient Photodegradation of Thiocyanate Ions in Mining Wastewater Using a ZnO-BiOI Heterojunction. Materials 2024, 17, 3832. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Duan, Z.; Xu, C.L.; Hou, D.; Gao, G.; Luo, W.; Wang, Y.; Zhu, Y. ZnO@Bi5O7I Heterojunction Derived from ZIF-8@BiOI for Enhanced Photocatalytic Activity under Visible Light. Materials 2022, 15, 508. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Feng, J.; Lu, T.; Zhang, X.; Kang, Y. Development of Bi2O2CO3/Ag2WO4 heterojunction photocatalysts incorporating oxygen vacancies for improving synergistic treatment of pollutants via adsorption and photocatalysis. J. Alloys Compd. 2024, 1005, 176050. [Google Scholar] [CrossRef]
- Yu, W.; Chen, F.; Wang, Y.; Zhao, L. Rapid evaluation of oxygen vacancies-enhanced photogeneration of the superoxide radical in nano-TiO2 suspensions. RSC Adv. 2020, 10, 29082–29089. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Wang, M.; Han, J. Mesoporous In2O3 nanorods/In2S3 nanosheets hierarchical heterojunctions toward highly efficient visible light photocatalysis. J. Alloys Compd. 2022, 921, 165973. [Google Scholar] [CrossRef]
Catalyst | CN− Concentration (ppm) | Removal Efficiency (%) | Time (mins) | R2 | (k) min−1 | Reference |
---|---|---|---|---|---|---|
K2La2Ti3O10—KLTO | 100 | 90 | 300 | 0.762 | 0.0078 | [5] |
TiO2-Pd-HAP-Fe-TCPP nanocomposite | 100 | 90 | 120 | 0.900 | 0.4520 | [40] |
TiO2-Pd-HAP nanocomposite | 100 | 52 | 120 | 0.990 | 0.0420 | [40] |
ZnO-[10%]BiOI | 40 | 100 | 20 | 0.951 | 0.0889 | This work |
ZnO-[10%]BiOI | 60 | 100 | 25 | 0.999 | 0.1005 | This work |
ZnO-[10%]BiOI | 80 | 100 | 35 | 0.988 | 0.0592 | This work |
ZnO-[10%]BiOI | 100 | 97 | 35 | 0.937 | 0.0600 | This work |
TiO2/Fe2O3 | 750 | 62 | 120 | - | - | [42] |
TiO2 | 105 | 100 | 600 | - | - | [32] |
Cu-TiO2 | 60 | 100 | 180 | - | - | [41] |
GO/TiO2/ZSM-5 | 72 | 93 | 180 | 0.988 | 0.0128 | [6] |
Fe-TCPP-S-TiO2@rGO (PUF-immobilized system) | 100 | 91 | 120 | 0.988 | 0.0196 | [15] |
Fe-TCPP-S-TiO2@rGO (suspended system) | 100 | 75 | 120 | 0.984 | 0.0113 | [15] |
TiO2/Fe2O3/PAC | 300 | 97 | 170 | 0.984 | 0.0144 | [43] |
TiO2/Fe2O3/Zeolite | 200 | 89 | 160 | 0.987 | 0.0186 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashiegbu, D.C.; Pilane, P.; Moma, J.; Potgieter, H. Enhanced Photocatalytic Degradation of Cyanide in Mining Wastewater Using a ZnO-BiOI Heterojunction Catalyst. Surfaces 2025, 8, 3. https://doi.org/10.3390/surfaces8010003
Ashiegbu DC, Pilane P, Moma J, Potgieter H. Enhanced Photocatalytic Degradation of Cyanide in Mining Wastewater Using a ZnO-BiOI Heterojunction Catalyst. Surfaces. 2025; 8(1):3. https://doi.org/10.3390/surfaces8010003
Chicago/Turabian StyleAshiegbu, Darlington C., Paballo Pilane, John Moma, and Herman Potgieter. 2025. "Enhanced Photocatalytic Degradation of Cyanide in Mining Wastewater Using a ZnO-BiOI Heterojunction Catalyst" Surfaces 8, no. 1: 3. https://doi.org/10.3390/surfaces8010003
APA StyleAshiegbu, D. C., Pilane, P., Moma, J., & Potgieter, H. (2025). Enhanced Photocatalytic Degradation of Cyanide in Mining Wastewater Using a ZnO-BiOI Heterojunction Catalyst. Surfaces, 8(1), 3. https://doi.org/10.3390/surfaces8010003