Scanning Kelvin Probe for Detection in Steel of Locations Enriched by Hydrogen and Prone to Cracking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrochemical Treatment and Measurements in Aqueous Electrolytes
2.3. Scanning Kelvin Probe
2.4. Scanning Electron Microscopy
3. Results and Discussion
3.1. SKP Monitoring of Steel Surface in Air after the Grinding and Hydrogen Charging
3.2. Effect of Cathodic Hydrogen Charging on the Rest Potential of HSS Steel in Aqueous Electrolyte
3.3. SKP Assessment of HSS Hydrogen-Assisted Cracking
3.4. SKP Detection of Hydrogen in the Steel Membrane
4. Conclusions
- Cathodic polarization and hydrogen absorption decreased the potential of the steels, due to the reduction of the surface oxide film and hydrogen absorption. Exposure to air or alkali electrolyte increased the potential, due to hydrogen effusion and the formation of oxide-hydroxide phases. The increase in the amount of hydrogen trapped in the microstructure delayed the steel oxidation and the noble shift of the potential.
- Cathodic hydrogen charging under severe conditions was used to induce cracks. SKP showed low potentials for this area, which was the result of hydrogen accumulation in the deformation field of cracks. The cracks showed the slowest kinetic of oxide formation (passivation) in air.
- The hydrogen permeation across the steel membrane was studied. The interstitial hydrogen uniformly decreased the potential of the entry and diffusion sides for mild steel and HSS. Additionally, negative wells and spikes of potential were found in the maps of HSS for the directly hydrogen charged and hydrogen permeation sides of the membrane. The locations enriched by hydrogen obtained a lower potential, due to the prolonged effusion and reduction activity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Omura, T.; Kudo, T.; Fujimoto, S. Environmental Factors Affecting Hydrogen Entry into High Strength Steel due to Atmospheric Corrosion. Mater. Trans. 2006, 47, 2956–2962. [Google Scholar] [CrossRef] [Green Version]
- Tsuru, T.; Huang, Y.; Ali, M.R.; Nishikata, A. Hydrogen entry into steel during atmospheric corrosion process. Corros. Sci. 2005, 47, 2431–2440. [Google Scholar] [CrossRef]
- So, K.H.; Kim, J.S.; Chun, Y.S.; Park, K.T.; Lee, Y.K.; Lee, C.S. Hydrogen delayed fracture properties and internal hydrogen behaviour of a Fe–18Mn–1.5Al–0.6C TWIP steel. ISIJ Int. 2009, 49, 1952–1959. [Google Scholar] [CrossRef] [Green Version]
- Hirth, J.P. Effects of hydrogen on the properties of iron and steel. Metall. Mater. Trans. A 1980, 11, 861–890. [Google Scholar] [CrossRef]
- Chiaberge, M. New Trends and Developments in Automotive System Engineering, High Mn TWIP Steels for Automotive Applications; De Cooman, B.C., Chin, K.G., Kim, J.K., Eds.; IntechOpen Limited: London, UK, 2011; pp. 101–128. [Google Scholar]
- Liu, Z.Y.; Li, X.G.; Cheng, Y.F. Mechanistic aspects of near-neutral stress corrosion cracking of pipelines under cathodic polarization. Corros. Sci. 2012, 55, 54–60. [Google Scholar] [CrossRef]
- Wang, M.; Akiyama, E.; Tsuzaki, K. Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation. Corros. Sci. 2006, 48, 2189–2202. [Google Scholar] [CrossRef]
- Akiyama, E.; Matsukado, K.; Wang, M.; Tsuzaki, K. Evaluation of hydrogen entry into high strength steel under atmospheric corrosion. Corros. Sci. 2010, 52, 2758–2765. [Google Scholar] [CrossRef]
- Nazarov, A.; Vucko, F.; Thierry, D. Scanning Kelvin Probe for detection of the hydrogen induced by atmospheric corrosion of ultra-high strength steel. Electrochim. Acta 2016, 216, 130–139. [Google Scholar] [CrossRef]
- Sanchez, J.; Lee, S.F.; Martin-Rengel, M.A.M.; Fullea, J.; Andrade, C.; Ruiz-Hervias, J. Measurement of hydrogen and embrittlement of high strength steel. Eng. Fail. Anal. 2016, 59, 467–477. [Google Scholar] [CrossRef]
- Nanninga, N.; Grochowsi, J.; Heldt, L.; Rundman, K. Role of microstructure, composition, and hardness in resisting hydrogen embrittlement of fastener grade steels. Corros. Sci. 2010, 52, 1237–1246. [Google Scholar] [CrossRef]
- Cabrini, M.; Sinigaglia, E.; Spinelli, C.; Tarenzi, M.; Testa, C.; Bolzoni, F.M. Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of J-Integral Curve. Materials 2019, 12, 1843. [Google Scholar] [CrossRef] [Green Version]
- Pérez Escobar, D.; Depover, T.; Duprez, L.; Verbeken, K.; Verhaege, M. Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel. Acta Mater. 2012, 60, 2593–2605. [Google Scholar] [CrossRef]
- Yokobori, A.T.; Chinda, Y.; Nemoto, T.; Satoh, K.; Yamada, T. The characteristics of hydrogen diffusion and concentration around a crack tip concerned with hydrogen embrittlement. Corros. Sci. 2002, 44, 407–424. [Google Scholar] [CrossRef]
- Katano, G.; Ueyama, K.; Mori, M. Observation of hydrogen distribution in high-strength steel. J. Mater. Sci. 2001, 36, 2277–2286. [Google Scholar] [CrossRef]
- Ma, Z.; Xiong, X.; Chen, L.; Su, Y. Quantitative calibration of the relationship between Volta potential measured by scanning Kelvin probe force microscope (SKPFM) and hydrogen concentration. Electrochim. Acta 2021, 366, 137422. [Google Scholar] [CrossRef]
- Krieger, W.; Merzlikin, S.V.; Bashir, A.; Szczepaniak, A.; Springer, H.; Rohwerder, M. Spatially resolved localization and characterization of trapped hydrogen in zero to three dimensional defects inside ferritic steel. Acta Mater. 2015, 144, 236–244. [Google Scholar] [CrossRef]
- Nagao, A.; Kuramoto, S.; Ichitani, K.; Kanno, M. Visualization of hydrogen transport in high strength steels affected by stress fields and hydrogen trapping. Scr. Mater. 2001, 45, 1227–1232. [Google Scholar] [CrossRef]
- Gruenewald, P.; Hautz, N.; Motz, C. Implementation of an experimental setup to qualitatively detect hydrogen permeation along grain boundaries in nickel using Scanning Kelvin Probe Force Microscopy under varying atmospheres. Int. J. Hydrogen Energy 2022, 47, 15922–15932. [Google Scholar] [CrossRef]
- Evers, S.; Senöz, C.; Rohwerder, M. Hydrogen detection in metals: A review and introduction of a Kelvin probe approach. Sci. Technol. Adv. Mater. 2013, 14, 14201. [Google Scholar] [CrossRef]
- Schaller, R.F.; Scully, J.R. Measurement of effective hydrogen diffusivity using the scanning Kelvin probe. Electrochem. Commun. 2014, 40, 42–44. [Google Scholar] [CrossRef]
- Nazarov, A.; Thierry, D. Application of Volta potential mapping to determine metal surface defects. Electrochim. Acta 2007, 52, 7689–7696. [Google Scholar] [CrossRef]
- Nazarov, A.; Vucko, F.; Thierry, D. Scanning Kelvin probe Investigation of high-strength steel surface after impact of hydrogen and tensile strain. Corros. Mater. Degrad. 2020, 1, 187–197. [Google Scholar] [CrossRef]
- Trasatti, S.; Parsons, R. Interphases in systems of conducting phases. Pure Appl. Chem. 1986, 58, 437–454. [Google Scholar] [CrossRef]
- Huang, S.-M.; Yee, S.; Atanasoski, R.T.; McMillan, C.S.; Oriani, R.A.; Smyrl, W.H. Work Function Topography on Thin Anodic TiO2 Films. J. Electrochem. Soc. 1991, 138, L63–L64. [Google Scholar] [CrossRef]
- Yee, S.; Oriani, R.A.; Stratmann, M. Application of a Kelvin Microprobe to the Corrosion of Metals in Humid Atmospheres. J. Electrochem. Soc. 1991, 138, 55. [Google Scholar] [CrossRef]
- Sato, N.; Okamoto, G. Electrochemical passivation of Metals. In Comprehensive Treatise of Electrochemistry; Bockris, J.O., Conway, B.E., Yeager, E., White, E.E., Eds.; Plenum Press: New York, NY, USA; London, UK, 1981; Volume 4, pp. 193–242. [Google Scholar]
- Kuznetsov, A.M.; Dogonadze, R.R. Kinetics of some redox reactions in the metal-semiconductor film-electrolyte solution system. Izv. Akad. Nauk SSSR Ser. Khim. 1964, 12, 2140–2145. [Google Scholar]
- Luo, H.; Li, Z.; Chen, Y.H.; Ponge, D.; Rohwerder, M.; Raabe, D. Hydrogen effects on microstructural evolution and passive film characteristics of a duplex stainless steel. Electrochem. Commun. 2017, 79, 28–32. [Google Scholar] [CrossRef]
- Grundmeier, G.; Stratmann, M. Influence of oxygen and argon plasma treatments on the chemical structure and redox state of oxide covered iron. Appl. Surf. Sci. 1999, 141, 43–56. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; McIntyre, N.S. Studies of the oxidation of iron by air after being exposed to water vapour using angle-resolved X-ray photoelectron spectroscopy and QUASES. Surf. Interface Anal. 2004, 36, 1637–1641. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed.; NACE International: Houston, TX, USA, 1974. [Google Scholar]
- Modiano, S.; Carreno, J.A.V.; Fugivara, C.S.; Torresi, R.M.; Vivier, V.; Benedetti, A.V.; Mattos, O.R. Changes on iron electrode surface during hydrogen permeation in borate buffer solution. Electrochim. Acta 2008, 53, 3670–3679. [Google Scholar] [CrossRef]
- Williams, G.; McMurray, H.N.; Newman, R.C. Surface oxide reduction by hydrogen permeation through iron foil detected using a scanning Kelvin probe. Electrochem. Commun. 2013, 27, 144–147. [Google Scholar] [CrossRef]
- Vucko, F.; Ootsuka, S.; Rioual, S.; Diler, E.; Nazarov, A.; Thierry, D. Hydrogen detection in high strength dual phase steel using scanning Kelvin probe technique and XPS analyses. Corros. Sci. 2022, 197, 110072. [Google Scholar] [CrossRef]
- Zhong, X.; Schulz, M.; Wu, C.H.; Rabe, M.; Erbe, A.; Rohwerder, M. Limiting Current Density of Oxygen Reduction under Ultrathin Electrolyte Layers: From the Micrometer Range to Monolayers. ChemElectroChem 2021, 8, 712–718. [Google Scholar] [CrossRef]
- Masuda, H. SKFM observation of SCC on SUS 304 stainless steel. Corros. Sci. 2007, 49, 120–129. [Google Scholar] [CrossRef]
- Saintier, N.; Awane, T.; Olive, J.M.; Matsuoka, S.; Murakami, Y. Analyses of hydrogen distribution around fatigue crack on type 304 stainless steel using secondary ion mass spectrometry. Int. J. Hydrogen Energy 2011, 36, 8630–8640. [Google Scholar] [CrossRef] [Green Version]
- Laureys, A.; Van den Eeckhout, E.; Petrov, R.; Verbeken, K. Effect of deformation and charging conditions of crack and blister formation during electrochemical hydrogen charging. Acta Mater. 2017, 127, 192–202. [Google Scholar] [CrossRef]
- Zakroczymski, T. Adaptation of the electrochemical permeation technique for studying entry, transport and trapping of hydrogen in metals. Electrochim. Acta 2006, 51, 2261–2266. [Google Scholar] [CrossRef]
- Schaller, R.F.; Scully, J.R. Spatial determination of diffusible hydrogen concentrations proximate to pits in a Fe–Cr–Ni–Mo steel using the Scanning Kelvin Probe. Electrochem. Commun. 2016, 63, 5–9. [Google Scholar] [CrossRef] [Green Version]
C | Si | Mn | Al | Nb | Cr | Mo | Ni | |
---|---|---|---|---|---|---|---|---|
HSS 1500 | <0.3 | 0.18 +/−0.02 | 0.5 +/−0.1 | <0.1 | <0.1 | - | - | - |
SAE 1008 | <0.13 | <0.10 | <0.5 | - | <0.08 | <0.15 | <0.06 | <0.2 |
Material | Yield Strength | Tensile Strength | Elongation |
---|---|---|---|
(MPa) | (MPa) | (min %) | |
HSS 1500 | 1220–1520 | 1500–1750 | 3 |
SAE 1008 | 350–550 | 650–880 | 8–25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazarov, A.; Helbert, V.; Vucko, F. Scanning Kelvin Probe for Detection in Steel of Locations Enriched by Hydrogen and Prone to Cracking. Corros. Mater. Degrad. 2023, 4, 158-173. https://doi.org/10.3390/cmd4010010
Nazarov A, Helbert V, Vucko F. Scanning Kelvin Probe for Detection in Steel of Locations Enriched by Hydrogen and Prone to Cracking. Corrosion and Materials Degradation. 2023; 4(1):158-173. https://doi.org/10.3390/cmd4010010
Chicago/Turabian StyleNazarov, Andrei, Varvara Helbert, and Flavien Vucko. 2023. "Scanning Kelvin Probe for Detection in Steel of Locations Enriched by Hydrogen and Prone to Cracking" Corrosion and Materials Degradation 4, no. 1: 158-173. https://doi.org/10.3390/cmd4010010
APA StyleNazarov, A., Helbert, V., & Vucko, F. (2023). Scanning Kelvin Probe for Detection in Steel of Locations Enriched by Hydrogen and Prone to Cracking. Corrosion and Materials Degradation, 4(1), 158-173. https://doi.org/10.3390/cmd4010010