Investigation of the Effect Chloride Ions on Carbon Steel in Closed Environments at Different Temperatures
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Solutions
2.2. Test Procedures
2.3. Post-Test Analysis
2.3.1. Uniform Corrosion Rate Determined Using Weight Loss Method
2.3.2. Localised Corrosion Assessed Using Surface Profilometry
2.3.3. Corrosion Product Characterisation
3. Results and Discussion
3.1. Uniform Corrosion
3.2. Localised Corrosion Analysis
3.3. Corrosion Product Layer Characterisation
SEM/EDS Results
3.4. Raman Spectroscopy
3.5. Electrochemical Measurements
3.5.1. Electrochemical Impedance Spectroscopy (EIS)
3.5.2. Electrochemical Noise Analysis (EN)
4. Conclusions
- Localised corrosion was evident on the samples in the gas phase exposed to condensing condition. However, uniform corrosion was a dominant form of corrosion on samples immersed in 3.5 wt.% NaCl.
- Thermal cycling appears to promote the formation of a protective corrosion product layer on the carbon steel surface, thus creating an effective barrier and reducing the extent of localised corrosion in the immersion condition.
- Hematite (α-Fe2O3) was the dominant corrosion product in all conditions. Lepidocrocite (γ-FeOOH) was detected only on the sample immersed in 3.5 wt.% NaCl solution under thermal cycling.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- May, M. Corrosion behavior of mild steel immersed in different concentrations of NaCl solutions. J. Sebha Univ. 2016, 15, 13. [Google Scholar]
- Kadhim, F.S. Investigation of Carbon Steel Corrosion in Water Base Drilling Mud. Mod. Concepts Mater. Sci. 2011, 5, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Murphy, O.J.; Bockris, J.O.; Pou, T.E.; Tongson, L.L.; Monkowski, M.D. Chloride Ion Penetration of Passive Films on Iron. J. Electrochem. Soc. 1983, 130, 1792–1794. [Google Scholar] [CrossRef]
- Song, Q.; Wang, X.; Pan, B.; Wan, L. Effect of relative humidity on corrosion of Q235 carbon steel under thin electrolyte layer in simulated marine atmosphere. Anti-Corros. Methods Mater. 2020, 67, 187–196. [Google Scholar] [CrossRef]
- Clegg, S.L.; Brimblecombe, P. The solubility and activity coefficient of oxygen in salt solutions and brines. Geochim. Cosmochim. Acta 1990, 54, 3315–3328. [Google Scholar] [CrossRef]
- Gao, K.; Shang, S.; Zhang, Z.; Gao, Q.; Ma, J.; Liu, W. Effect of Temperature on Corrosion Behavior and Mechanism of S135 and G105 Steels in CO2/H2S Coexisting System. Metals 2022, 12, 1848. [Google Scholar] [CrossRef]
- Camuffo, D.; della Valle, A.; Becherini, F. A critical analysis of one standard and five methods to monitor surface wetness and time-of-wetness. Theor. Appl. Climatol. 2018, 132, 1143–1151. [Google Scholar] [CrossRef]
- Esmaily, M.; Shahabi-Navid, M.; Svensson, J.E.; Halvarsson, M.; Nyborg, L.; Cao, Y.; Johansson, L.G. Influence of temperature on the atmospheric corrosion of the Mg-Al alloy AM50. Corros. Sci. 2015, 90, 420–433. [Google Scholar] [CrossRef] [Green Version]
- Chiba, M.; Saito, S.; Takahashi, H.; Shibata, Y. Corrosion of Al alloys in repeated wet-dry cycle tests with NaCl solution and pure water at 323 K. J. Solid State Electrochem. 2015, 90, 420–433. [Google Scholar] [CrossRef]
- Chiba, M.; Saito, S.; Nagai, K.; Takahashi, H.; Shibata, Y. Effect of NaCl concentration on corrosion of Al alloy during repeated wet–dry cycle tests at 323 K—Comparing with corrosion in immersion tests. Surf. Interface Anal. 2016, 48, 767–774. [Google Scholar] [CrossRef]
- Cai, Y.; Zhao, Y.; Ma, X.; Zhou, K.; Chen, Y. Influence of environmental factors on atmospheric corrosion in dynamic environment. Corros. Sci. 2018, 137, 163–175. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Wu, B.; Guo, X.W.; Wang, Y.J.; Chen, D.; Zhang, Y.C.; Du, K.; Oguzie, E.E.; Ma, X.L. Unmasking chloride attack on the passive film of metals. Nat. Commun. 2018, 9, 2559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoar, T.P. The production and breakdown of the passivity of metals. Corros. Sci. 1967, 7, 341–355. [Google Scholar] [CrossRef]
- Hoar, T.P.; Mears, D.C.; Rothwell, G.P. The relationships between anodic passivity, brightening and pitting. Corros. Sci. 1965, 5, 279–289. [Google Scholar] [CrossRef]
- Sato, N. A theory for breakdown of anodic oxide films on metals. Electrochim. Acta 1971, 16, 1683–1692. [Google Scholar] [CrossRef]
- Galvele, J.R. Transport Processes and the Mechanism of Pitting of Metals. J. Electrochem. Soc. 1976, 123, 464. [Google Scholar] [CrossRef] [Green Version]
- ASTM A36/A36M-05; Standard Specification for Carbon Structural Steel. ASTM: West Conshohocken, PA, USA, 2005.
- ASTM G1-03; ASTM G1-03 Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM Special Technical Publication: West Conshohocken, PA, USA, 2003.
- ASTM G46-94; Standard Guide for Examination and Evaluation of Pitting Corrosion. ASTM International: West Conshohocken, PA, USA, 2018.
- Bellot-Gurlet, L.; Neff, D.; Réguer, S.; Monnier, J.; Saheb, M.; Dillmann, P. Raman studies of corrosion layers formed on archaeological irons in various media. J. Nano Res. 2009, 8, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Cornell, R.M.; Schwertmann, U. The Iron Oixdes: Structures, Properties, Reactions, Occurences and Uses; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Froment, F.; Tournié, A.; Colomban, P. Raman identification of natural red to yellow pigments: Ochre and iron-containing ores. J. Raman Spectrosc. 2008, 39, 560–568. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. RRUFFTM Project. In Power Databases RRUFF Project Highlights Mineral; Crystallogr, T., Armbruster, R.M.D., Eds.; De Gruyter: Berlin, Germany, 2015. [Google Scholar]
- Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 2009, 177, 941–948. [Google Scholar] [CrossRef]
- Xu, L.; Xin, Y.; Ma, L.; Zhang, H.; Lin, Z.; Li, X. Challenges and solutions of cathodic protection for marine ships. Corros. Commun. 2021, 2, 33–40. [Google Scholar] [CrossRef]
- Jiang, J.; Xie, Y.; Islam, M.A.; Stack, M.M. The Effect of Dissolved Oxygen in Slurry on Erosion–Corrosion of En30B Steel. J. Bio-Tribo-Corros. 2017, 3, 45. [Google Scholar] [CrossRef] [Green Version]
- Jun, J.; Frankel, G.S.; Sridhar, N. Further Modeling of Chloride Concentration and Temperature Effects on 1D Pit Growth. J. Electrochem. Soc. 2016, 163, C823. [Google Scholar] [CrossRef]
- Frankel, G.S. Pitting Corrosion of Metals: A Review of the Critical Factors. J. Electrochem. Soc. 1998, 145, 2186. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, K.; Dong, C.; Wu, J.; Li, X.; Huang, Y. In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl− and SO42−. Eng. Fail. Anal. 2011, 18, 1981–1989. [Google Scholar] [CrossRef]
- Paterson, E. The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses. Clay Miner. 1999. [Google Scholar] [CrossRef]
- Yang, M.; Liu, J. In Situ Monitoring of Corrosion under Insulation Using Electrochemical and Mass Loss Measurements. Int. J. Corros. 2022, 2022, 6681008. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Li, Y.; Wang, F. EIS monitoring study of atmospheric corrosion under variable relative humidity. Corros. Sci. 2010, 52, 3677–3686. [Google Scholar] [CrossRef]
- Cottis, R.A. Interpretation of electrochemical noise data. Corrosion 2001, 57, 22. [Google Scholar] [CrossRef]
- Legat, A.; Doleček, V. Corrosion Monitoring System Based on Measurement and Analysis of Electrochemical Noise. Corrosion 1995, 51, 295–300. [Google Scholar] [CrossRef]
- Comas, C.; Huet, F.; Ngo, K.; Fregonese, M.; Idrissi, H.; Normand, B. Corrosion propagation monitoring using electrochemical noise measurements on carbon steel in hydrogenocarbonated solution containing chloride ions. Corros. Sci. 2021, 193, 109885. [Google Scholar] [CrossRef]
Sample | C | Si | Mn | P | S | Fe |
---|---|---|---|---|---|---|
AS36 | 0.22 | 0.55 | 1.7 | 0.04 | 0.03 | Bal. |
Condition | Exposure Time | |
---|---|---|
5 d | 21 d | |
Depth (µm)/Localised Corrosion Rate (mm∙y−1) | Depth (µm)/Localised Corrosion Rate (mm∙y−1) | |
Liquid phase (80 °C) | 15/1.1 | 43/0.7 |
Liquid phase (80 to 25 °C) | 6/0.4 | 16/0.3 |
Gas phase (80 °C) | 51/3.7 | 185/3.2 |
Gas phase (80 to 25 °C) | 22/1.6 | 124/2.2 |
Duration (Day) | Rs (Ω·cm2) | Qc (F·sα−1·cm−2) | nc | Rc (Ω·cm2) | Qdl (F·sα−1·cm−2) | ndl | Rdl (Ω·cm2) | Χ2 |
---|---|---|---|---|---|---|---|---|
1 | 5.05 | 0.18 × 10−2 | 0.76 | 296.2 | 0.27 × 10−3 | 0.71 | 478.4 | 0.104 |
9 | 5.21 | 0.24 × 10−3 | 0.84 | 737 | 0.151 × 10−3 | 0.82 | 1854 | 0.044 |
14 | 5.81 | 0.39 × 10−3 | 0.85 | 300 | 0.41 × 10−3 | 0.84 | 2470 | 0.027 |
21 | 5.42 | 0.114 × 10−3 | 0.89 | 1132 | 0.125 × 10−3 | 0.74 | 2177 | 0.036 |
Duration (Day) | Rs (Ω·cm2) | Qc (F·sα−1·cm−2) | nc | Rc (Ω·cm2) | Qdl (F·sα−1·cm−2) | ndl | Rdl (Ω·cm2) | Χ2 |
---|---|---|---|---|---|---|---|---|
1 | 3.0 | 0.79 × 10−3 | 0.76 | 33.1 | 0.58 × 10−1 | 0.97 | 900 | 0.455 |
9 | 3.01 | 0.12 × 10−2 | 0.75 | 1466 | 0.015 × 10−1 | 0.94 | 106.2 | 0.035 |
14 | 3.02 | 0.71 × 10−3 | 0.72 | 1426 | 0.24 × 10−1 | 0.86 | 1629 | 0.024 |
21 | 3.13 | 0.88 × 10−3 | 0.703 | 1390 | 0.157 × 10−3 | 0.743 | 885.3 | 0.0046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.; Hou, Y.; Lepkova, K.; Pojtanabuntoeng, T. Investigation of the Effect Chloride Ions on Carbon Steel in Closed Environments at Different Temperatures. Corros. Mater. Degrad. 2023, 4, 364-381. https://doi.org/10.3390/cmd4030019
Ahmed S, Hou Y, Lepkova K, Pojtanabuntoeng T. Investigation of the Effect Chloride Ions on Carbon Steel in Closed Environments at Different Temperatures. Corrosion and Materials Degradation. 2023; 4(3):364-381. https://doi.org/10.3390/cmd4030019
Chicago/Turabian StyleAhmed, Saleh, Yang Hou, Katerina Lepkova, and Thunyaluk Pojtanabuntoeng. 2023. "Investigation of the Effect Chloride Ions on Carbon Steel in Closed Environments at Different Temperatures" Corrosion and Materials Degradation 4, no. 3: 364-381. https://doi.org/10.3390/cmd4030019
APA StyleAhmed, S., Hou, Y., Lepkova, K., & Pojtanabuntoeng, T. (2023). Investigation of the Effect Chloride Ions on Carbon Steel in Closed Environments at Different Temperatures. Corrosion and Materials Degradation, 4(3), 364-381. https://doi.org/10.3390/cmd4030019