Microbial Communities Associated with Alternative Fuels in Model Seawater-Compensated Fuel Ballast Tanks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactor Design
2.2. Chemical Analyses
2.3. Microbial Enumeration
2.4. Sulfate Reduction Assay
2.5. Microbiological Sample Collection and DNA Extraction
2.6. Quantification of 16S rRNA Gene Copies by Quantitative PCR
2.7. Construction and Analysis of 16S rRNA Amplicon Libraries
2.8. Statistical Analysis
3. Results
3.1. Chemical Analyses
3.1.1. OCP, pH, and Dissolved Oxygen
3.1.2. Sulfur Species
3.1.3. Dissolved Fe
3.2. Microbial Enumeration
3.2.1. Cell Counts
3.2.2. qPCR
3.3. Microbial Community Analysis: 16S rRNA Gene Amplicon Libraries
3.3.1. Microbial Community Analysis of Reactor Water Samples
4. Discussion
4.1. Effect of Fuels on pH, OCP, Dissolved Iron Chemistry, and Sulfate Reduction
4.2. Effect of Fuels on Microbial Community Composition
4.3. How Might Oxygen Affect Sulfate Reduction?
4.4. Divergence between Replicate Reactors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Youssef, N.; Elshahed, M.S.; McInerney, M.J. Microbial processes in oil fields: Culprits, problems, and opportunities. Adv. Appl. Microbiol. 2009, 66, 141. [Google Scholar] [CrossRef] [PubMed]
- Chaves, I.A.; Melchers, R.E.; Peng, L.; Stewart, M.G. Probabilistic remaining life estimation for deteriorating steel marine infrastructure under global warming and nutrient pollution. Ocean Eng. 2016, 126, 129–137. [Google Scholar] [CrossRef]
- Skovhus, T.L.; Lee, J.S.; Little, B.J. Predominant MIC mechanisms in the oil and gas industry. In Microbiologically Influenced Corrosion in the Upstream Oil and Gas Industry; Skovhus, T.L., Enning, D., Lee, J.S., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 75–86. [Google Scholar] [CrossRef]
- Little, B.J.; Blackwood, D.J.; Hinks, J.; Lauroc, F.M.; Marsili, E.; Okamoto, A.; Rice, S.A.; Wade, S.A.; Flemming, H.-C. Microbially influenced corrosion—Any progress? Corros. Sci. 2020, 170, 108641. [Google Scholar] [CrossRef]
- Marks, C.R.; Duncan, K.E.; Nanny, M.A.; Harriman, B.H.; Avci, R.; Oldham, A.L.; Suflita, J.M. An integrated metagenomic and metabolite profiling study of hydrocarbon biodegradation and corrosion in navy ships. NPJ Mater. Degrad. 2021, 5, 60. [Google Scholar] [CrossRef]
- Bartis, J.T.; Van Bibber, L. Alternative Fuels for Military Applications; Rand National Defense Research Institute: Santa Monica, CA, USA, 2011. [Google Scholar]
- Zinoviev, S.; Müller-Langer, F.; Das, P.; Bertero, N.; Fornasiero, P.; Kaltschmitt, M.; Centi, G.; Miertus, S. Next-generation biofuels: Survey of emerging technologies and sustainability issues. ChemSusChem 2010, 3, 1106–1133. [Google Scholar] [CrossRef] [PubMed]
- Stamper, D.M.; Lee, G.L. The Explicit and Implicit Qualities of Alternative Fuels: Issues to Consider for Their Use in Marine Diesel Engines; Technical Report NSWCCD-61-TR–2008/15; Naval Surface Warfare Center: West Bethesda, MD, USA, 2008. [Google Scholar]
- Liang, R.; Aktas, D.F.; Aydin, E.; Bonifay, V.; Sunner, J.; Suflita, J.M. Anaerobic Biodegradation of Alternative Fuels and Associated Biocorrosion of Carbon Steel in Marine Environments. Environ. Sci. Technol. 2016, 50, 4844–4853. [Google Scholar] [CrossRef]
- Klemme, D.E.; Leonard, J.M. Inhibitors for Marine Sulfate-Reducing Bacteria in Shipboard Fuel Storage Tanks; Memorandum Report 2324; U.S. Naval Research Laboratory: Washington, DC, USA, 1971. [Google Scholar]
- Klemme, D.E.; Neihof, R.A. Control of Marine Sulfate-Reducing Bacteria in Water Displaced Shipboard Fuel Storage Tanks; Memorandum Report 2069; U.S. Naval Research Laboratory: Washington, DC, USA, 1969. [Google Scholar]
- Avci, R.; Davis, B.H.; Rieders, N.; Lucas, K.; Nandasiri, M.; Mogk, D. Role of Metallurgy in the Localized Corrosion of Carbon Steel. J. Miner. Mater. Charact. Eng. 2018, 6, 618–646. [Google Scholar] [CrossRef] [Green Version]
- Rieders, N.; Nandasiri, M.; Mogk, D.; Avci, R. New Insights into Sulfide Inclusions in 1018 Carbon Steels. Metals 2021, 11, 428. [Google Scholar] [CrossRef]
- Avci, R.; Suflita, J.M.; Jenneman, G.; Hampton, D. Impact of Metallurgical Properties on Pitting Corrosion in High-Pressure Seawater Injection Pipeline. In Failure Analysis of Microbiologically Influenced Corrosion; Eckert, R.B., Skovhus, T.L., Eds.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Wade, S.A.; Webb, J.S.; Eckert, R.B.; Jenneman, G.E.; Rice, S.A.; Skovhus, T.L.; Sturman, P.; Kotu, S.P.; Richardson, M.; Goeres, D.M. The role of standards in biofilm research and industry innovation. Int. Biodeterior. Biodegrad. 2023, 177, 105532. [Google Scholar] [CrossRef]
- Massey, L.K. Permeability Properties of Plastics and Elastomers—A Guide to Packaging and Barrier Materials, 2nd ed.; William Andrew Publishing/Plastics Design Library: Oxford, UK, 2003. [Google Scholar]
- Cole-Parmer. Chemical Compatibility Database. Available online: https://www.coleparmer.com/chemical-resistance (accessed on 16 April 2023).
- Kholodovych, V.; Welsh, W.J. Thermal-Oxidative Stability and Degradation of Polymers. In Physical Properties of Polymers Handbook, 2nd ed.; Marks, J.E., Ed.; Springer Science: New York, NY, USA, 2007; pp. 927–938. [Google Scholar]
- Liang, R.; Suflita, J.M. Protocol for Evaluating the Biological Stability of Fuel Formulations and Their Relationship to Carbon Steel Biocorrosion. In Hydrocarbon and Lipid Microbiology Protocols; McGenity, T., Timmis, K., Nogales, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 211–226. [Google Scholar] [CrossRef]
- Suflita, J.M.; Aktas, D.F.; Oldham, A.L.; Perez-Ibarra, B.M.; Duncan, K. Molecular tools to track bacteria responsible for microbiologically influenced corrosion. Biofouling 2012, 28, 1003–1010. [Google Scholar] [CrossRef]
- Lee, J.S.; Ray, R.I.; Little, B.J.; Duncan, K.E.; Aktas, D.F.; Oldham, A.L.; Davidova, I.A.; Suflita, J.M. Issues for storing plant-based alternative fuels in marine environments. Bioelectrochemistry 2014, 97, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, D.K.; Wilde, F.D. Reduction-oxidation potential (electrode method). In Techniques of Water-Resources Investigations; U.S. Geological Survey: Reston, VA, USA, 2005. [Google Scholar] [CrossRef]
- Ulrich, G.A.; Krumholz, L.R.; Suflita, J.M. A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides. Appl. Environ. Microbiol. 1997, 63, 1627–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldham, A.L.; Drilling, H.S.; Stamps, B.W.; Stevenson, B.S.; Duncan, K.E. Automated DNA extraction platforms offer solutions to challenges of assessing microbial biofouling in oil production facilities. Appl. Microbiol. Biotechnol. Express 2012, 2, 60. [Google Scholar] [CrossRef] [Green Version]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Oldham, A.L.; Sandifer, V.; Duncan, K.E. Effects of sample preservation on marine microbial diversity analysis. J. Microbiol. Methods 2019, 158, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Hamady, M.; Walker, J.; Harris, J.; Gold, N.J.; Knight, R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat. Methods 2008, 5, 235–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; Version 4.2.1; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 23 June 2022).
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Teunisse, G.M. Fantaxtic-Nested Bar Plots for Phyloseq Data. 2022. Version 2.0.1. Available online: https://github.com/gmteunisse/Fantaxtic (accessed on 10 March 2023).
- Stern, S.A.; Fried, J.R. Permeability of Polymers to Gases and Vapors. In Physical Properties of Polymers Handbook, 2nd ed.; Marks, J.E., Ed.; Springer Science: New York, NY, USA, 2007; pp. 1033–1050. [Google Scholar]
- Bazylinski, D.A.; Williams, T.J.; Lefèvre, C.T.; Trubitsyn, D.; Fang, J.; Beveridge, T.J.; Moskowitz, B.M.; Ward, B.; Schübbe, S.; Dubbels, B.L.; et al. Magnetovibrio blakemorei gen. nov., sp. nov., a magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh. Int. J. Syst. Evol. Microbiol. 2013, 63, 1824–1833. [Google Scholar] [CrossRef] [Green Version]
- Lovley, D.R.; Phillips, E.J.; Lonergan, D.J.; Widman, P.K. Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl. Environ. Microbiol. 1995, 61, 2132–2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokolova, T.; Hanel, J.; Onyenwoke, R.U.; Reysenbach, A.L.; Banta, A.; Geyer, R.; González, J.M.; Whitman, W.B.; Wiegel, J. Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov. Extremophiles 2007, 11, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Knoblauch, C.; Sahm, K.; Jørgensen, B.B. Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: Description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int. J. Syst. Bacteriol. 1999, 49, 1631–1643. [Google Scholar] [CrossRef] [PubMed]
- Beech, I.B.; Gaylarde, C.C. Recent Advances in the Study of biocorrosion-an overview. Rev. Microbiol. 1999, 30, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Bazylinski, D.A.; Lefèvre, C.T.; Schüler, D. Magnetotactic Bacteria. In The Prokaryotes: Prokaryotic Physiology and Biochemistry, 4th ed.; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 453–494. [Google Scholar] [CrossRef]
- Amor, M.; Tharaud, M.; Gélabert, A.; Komeili, A. Single-cell determination of iron content in magnetotactic bacteria: Implications for the iron biogeochemical cycle. Environ. Microbiol. 2020, 22, 823–831. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, X.; Guan, F.; Dong, X.; Sun, J.; Zhang, R.; Duan, J.; Zhang, B.; Hou, B. Microbiologically influenced corrosion of steel in coastal surface seawater contaminated by crude oil. NPJ Mater. Degrad. 2022, 6, 35. [Google Scholar] [CrossRef]
- Lu, Z.; Imlay, J.A. When anaerobes encounter oxygen: Mechanisms of oxygen toxicity, tolerance and defence. Nat. Rev. Microbiol. 2021, 19, 774–785. [Google Scholar] [CrossRef]
- Muyzer, G.; Kuenen, G.; Robertson, L.A. Colorless Sulfur Bacteria. In The Prokaryotes: Prokaryotic Physiology and Biochemistry, 4th ed.; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 555–588. [Google Scholar] [CrossRef]
- Pérez-Cataluña, A.; Salas-Massó, N.; Diéguez, A.L.; Balboa, S.; Lema, A.; Romalde, J.L.; Figueras, M.J. Revisiting the Taxonomy of the Genus Arcobacter: Getting Order from the Chaos. Front. Microbiol. 2018, 9, 2077. [Google Scholar] [CrossRef]
- Deng, S.; Wang, B.; Su, S.; Sun, S.; She, Y.; Zhang, F. Dynamics of Microbial Community and Removal of Hydrogen Sulfide (H2S) Using a Bio-Inhibitor and Its Application under the Oil Reservoir Condition. Energy Fuels 2022, 36, 14128–14135. [Google Scholar] [CrossRef]
- Schwermer, C.U.; Lavik, G.; Abed, R.M.; Dunsmore, B.; Ferdelman, T.G.; Stoodley, P.; Gieseke, A.; de Beer, D. Impact of nitrate on the structure and function of bacterial biofilm communities in pipelines used for injection of seawater into oil fields. Appl. Environ. Microbiol. 2008, 74, 2841–2851. [Google Scholar] [CrossRef] [Green Version]
- Marks, C.R.; Cooper, J.T.; Bonifay, V.; Stamps, B.W.; Le, H.M.; Harriman, B.H.; De Capite, A.; Brown, K.R.; Aktas, D.F.; Sunner, J.; et al. Integrated Methodology to Characterize Microbial Populations and Functions Across Small Spatial Scales in an Oil Production Facility. In Microbiologically Influenced Corrosion in the Upstream Oil and Gas Industry; Skovhus, T.L., Enning, D., Lee, J.S., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 325–350. [Google Scholar] [CrossRef]
Reactor # | Fuel Type |
---|---|
R1 | Petro-F76 |
R2 | Petro-F76 |
R3 | FT-F76 |
R4 | FT-F76 |
R5 | Petro- and FT-F76 |
R6 | Petro- and FT-F76 |
R7 | No fuel |
R8 | No fuel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominici, L.E.; Duncan, K.E.; Nanny, M.A.; Davidova, I.A.; Harriman, B.H.; Suflita, J.M. Microbial Communities Associated with Alternative Fuels in Model Seawater-Compensated Fuel Ballast Tanks. Corros. Mater. Degrad. 2023, 4, 382-397. https://doi.org/10.3390/cmd4030020
Dominici LE, Duncan KE, Nanny MA, Davidova IA, Harriman BH, Suflita JM. Microbial Communities Associated with Alternative Fuels in Model Seawater-Compensated Fuel Ballast Tanks. Corrosion and Materials Degradation. 2023; 4(3):382-397. https://doi.org/10.3390/cmd4030020
Chicago/Turabian StyleDominici, Lina E., Kathleen E. Duncan, Mark A. Nanny, Irene A. Davidova, Brian H. Harriman, and Joseph M. Suflita. 2023. "Microbial Communities Associated with Alternative Fuels in Model Seawater-Compensated Fuel Ballast Tanks" Corrosion and Materials Degradation 4, no. 3: 382-397. https://doi.org/10.3390/cmd4030020
APA StyleDominici, L. E., Duncan, K. E., Nanny, M. A., Davidova, I. A., Harriman, B. H., & Suflita, J. M. (2023). Microbial Communities Associated with Alternative Fuels in Model Seawater-Compensated Fuel Ballast Tanks. Corrosion and Materials Degradation, 4(3), 382-397. https://doi.org/10.3390/cmd4030020