Texture Analysis and Prediction of Response to Neoadjuvant Treatment in Patients with Locally Advanced Rectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. MR Technique and Patients’ Preparation
2.3. ROI Delineation
2.4. Texture Analysis
2.5. Pathological Analysis
2.6. Statistical Analysis
3. Results
3.1. Clinical Data
3.2. Texture Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Habr-Gama, A.; Perez, R.O.; Nadalin, W.; Sabbaga, J.; Ribeiro, U.; Silva E Sousa, A.H.; Campos, F.G.; Kiss, D.R.; Gama-Rodrigues, J. Operative Versus Nonoperative Treatment for Stage 0 Distal Rectal Cancer Following Chemoradiation Therapy: Long-Term Results. Ann. Surg. 2004, 240, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Santiago, I.; Rodrigues, B.; Barata, M.; Figueiredo, N.; Fernandez, L.; Galzerano, A.; Parés, O.; Matos, C. Re-Staging and Follow-up of Rectal Cancer Patients with MR Imaging When “Watch-and-Wait” Is an Option: A Practical Guide. Insights Imaging 2021, 12, 114. [Google Scholar] [CrossRef]
- Habr-Gama, A.; Gama-Rodrigues, J.; São Julião, G.P.; Proscurshim, I.; Sabbagh, C.; Lynn, P.B.; Perez, R.O. Local Recurrence After Complete Clinical Response and Watch and Wait in Rectal Cancer After Neoadjuvant Chemoradiation: Impact of Salvage Therapy on Local Disease Control. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.; Sen, S.; Engineer, R.; Saklani, A.; Pandey, T. Imaging and Management of Rectal Cancer. Semin. Ultrasound CT MRI 2020, 41, 183–206. [Google Scholar] [CrossRef]
- Bernier, L.; Balyasnikova, S.; Tait, D.; Brown, G. Watch-and-Wait as a Therapeutic Strategy in Rectal Cancer. Curr. Color. Cancer Rep 2018, 14, 37–55. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Azad, N.; Chen, Y.-J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Garrido-Laguna, I.; et al. Rectal Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 1139–1167. [Google Scholar] [CrossRef]
- Lang, D.; Ciombor, K.K. Diagnosis and Management of Rectal Cancer in Patients Younger Than 50 Years: Rising Global Incidence and Unique Challenges. J. Natl. Compr. Cancer Netw. 2022, 20, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Glynne-Jones, R.; Wyrwicz, L.; Tiret, E.; Brown, G.; Rödel, C.; Cervantes, A.; Arnold, D. Rectal Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2017, 28, iv22–iv40. [Google Scholar] [CrossRef]
- Birlik, B.; Obuz, F.; Elibol, F.D.; Celik, A.O.; Sokmen, S.; Terzi, C.; Sagol, O.; Sarioglu, S.; Gorken, I.; Oztop, I. Diffusion-Weighted MRI and MR- Volumetry—In the Evaluation of Tumor Response after Preoperative Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer. Magn. Reson. Imaging 2015, 33, 201–212. [Google Scholar] [CrossRef]
- Barral, M.; Eveno, C.; Hoeffel, C.; Boudiaf, M.; Bazeries, P.; Foucher, R.; Pocard, M.; Dohan, A.; Soyer, P. Diffusion-Weighted Magnetic Resonance Imaging in Colorectal Cancer. J. Visc. Surg. 2016, 153, 361–369. [Google Scholar] [CrossRef]
- Monguzzi, L.; Ippolito, D.; Bernasconi, D.P.; Trattenero, C.; Galimberti, S.; Sironi, S. Locally Advanced Rectal Cancer: Value of ADC Mapping in Prediction of Tumor Response to Radiochemotherapy. Eur. J. Radiol. 2013, 82, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Jhaveri, K.S.; Hosseini-Nik, H. MRI of Rectal Cancer: An Overview and Update on Recent Advances. Am. J. Roentgenol. 2015, 205, W42–W55. [Google Scholar] [CrossRef] [PubMed]
- Cai, G. Diffusion-Weighted Magnetic Resonance Imaging for Predicting the Response of Rectal Cancer to Neoadjuvant Concurrent Chemoradiation. WJG 2013, 19, 5520. [Google Scholar] [CrossRef] [PubMed]
- Sassen, S.; De Booij, M.; Sosef, M.; Berendsen, R.; Lammering, G.; Clarijs, R.; Bakker, M.; Beets-Tan, R.; Warmerdam, F.; Vliegen, R. Locally Advanced Rectal Cancer: Is Diffusion Weighted MRI Helpful for the Identification of Complete Responders (ypT0N0) after Neoadjuvant Chemoradiation Therapy? Eur. Radiol. 2013, 23, 3440–3449. [Google Scholar] [CrossRef]
- Sun, Y.-S.; Zhang, X.-P.; Tang, L.; Ji, J.-F.; Gu, J.; Cai, Y.; Zhang, X.-Y. Locally Advanced Rectal Carcinoma Treated with Preoperative Chemotherapy and Radiation Therapy: Preliminary Analysis of Diffusion-Weighted MR Imaging for Early Detection of Tumor Histopathologic Downstaging. Radiology 2010, 254, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Coppola, F.; Giannini, V.; Gabelloni, M.; Panic, J.; Defeudis, A.; Lo Monaco, S.; Cattabriga, A.; Cocozza, M.A.; Pastore, L.V.; Polici, M.; et al. Radiomics and Magnetic Resonance Imaging of Rectal Cancer: From Engineering to Clinical Practice. Diagnostics 2021, 11, 756. [Google Scholar] [CrossRef]
- Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Tibermacine, H.; Rouanet, P.; Sbarra, M.; Forghani, R.; Reinhold, C.; Nougaret, S.; the GRECCAR Study Group; Rullier, E.; Lelong, B.; Maingon, P.; et al. Radiomics Modelling in Rectal Cancer to Predict Disease-Free Survival: Evaluation of Different Approaches. Br. J. Surg. 2021, 108, 1243–1250. [Google Scholar] [CrossRef]
- Bibault, J.-E.; Giraud, P.; Housset, M.; Durdux, C.; Taieb, J.; Berger, A.; Coriat, R.; Chaussade, S.; Dousset, B.; Nordlinger, B.; et al. Deep Learning and Radiomics Predict Complete Response after Neo-Adjuvant Chemoradiation for Locally Advanced Rectal Cancer. Sci. Rep. 2018, 8, 12611. [Google Scholar] [CrossRef]
- Bulens, P.; Couwenberg, A.; Intven, M.; Debucquoy, A.; Vandecaveye, V.; Van Cutsem, E.; D’Hoore, A.; Wolthuis, A.; Mukherjee, P.; Gevaert, O.; et al. Predicting the Tumor Response to Chemoradiotherapy for Rectal Cancer: Model Development and External Validation Using MRI Radiomics. Radiother. Oncol. 2020, 142, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Yip, S.S.F.; Aerts, H.J.W.L. Applications and Limitations of Radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [Google Scholar] [CrossRef]
- Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in Medical Imaging—“How-to” Guide and Critical Reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Rogers, W.; Thulasi Seetha, S.; Refaee, T.A.G.; Lieverse, R.I.Y.; Granzier, R.W.Y.; Ibrahim, A.; Keek, S.A.; Sanduleanu, S.; Primakov, S.P.; Beuque, M.P.L.; et al. Radiomics: From Qualitative to Quantitative Imaging. Br. J. Radiol. 2020, 93, 20190948. [Google Scholar] [CrossRef] [PubMed]
- Stanzione, A.; Cuocolo, R.; Ugga, L.; Verde, F.; Romeo, V.; Brunetti, A.; Maurea, S. Oncologic Imaging and Radiomics: A Walkthrough Review of Methodological Challenges. Cancers 2022, 14, 4871. [Google Scholar] [CrossRef] [PubMed]
- Beets-Tan, R.G.H.; Lambregts, D.M.J.; Maas, M.; Bipat, S.; Barbaro, B.; Curvo-Semedo, L.; Fenlon, H.M.; Gollub, M.J.; Gourtsoyianni, S.; Halligan, S.; et al. Magnetic Resonance Imaging for Clinical Management of Rectal Cancer: Updated Recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) Consensus Meeting. Eur. Radiol. 2018, 28, 1465–1475. [Google Scholar] [CrossRef]
- Nioche, C.; Orlhac, F.; Boughdad, S.; Reuzé, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res. 2018, 78, 4786–4789. [Google Scholar] [CrossRef]
- Gillies, R.J.; Schabath, M.B. Radiomics Improves Cancer Screening and Early Detection. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2556–2567. [Google Scholar] [CrossRef]
- Horvat, N.; Veeraraghavan, H.; Nahas, C.S.R.; Bates, D.D.; Ferreira, F.R.; Zheng, J.; Capanu, M.; Fuqua, J.L.; Fernandes, M.C.; Sosa, R.E.; et al. Combined Artificial Intelligence and Radiologist Model for Predicting Rectal Cancer Treatment Response from Magnetic Resonance Imaging: An External Validation Study. Abdom Radiol. 2022, 47, 2770–2782. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, X.; Shi, Z.; Yang, Z.; Du, X.; Zhao, Z.; Cheng, X. Radiomics Analysis of Multiparametric MRI for Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Eur. Radiol. 2019, 29, 1211–1220. [Google Scholar] [CrossRef]
- Staal, F.C.R.; van der Reijd, D.J.; Taghavi, M.; Lambregts, D.M.J.; Beets-Tan, R.G.H.; Maas, M. Radiomics for the Prediction of Treatment Outcome and Survival in Patients With Colorectal Cancer: A Systematic Review. Clin. Color. Cancer 2021, 20, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Shafiq-ul-Hassan, M.; Zhang, G.G.; Latifi, K.; Ullah, G.; Hunt, D.C.; Balagurunathan, Y.; Abdalah, M.A.; Schabath, M.B.; Goldgof, D.G.; Mackin, D.; et al. Intrinsic Dependencies of CT Radiomic Features on Voxel Size and Number of Gray Levels. Med. Phys. 2017, 44, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Lim, H.; Bae, B.K.; Hahm, M.H.; Chong, G.O.; Jeong, S.Y.; Kim, J.-C. Robustness of Magnetic Resonance Radiomic Features to Pixel Size Resampling and Interpolation in Patients with Cervical Cancer. Cancer Imaging 2021, 21, 19. [Google Scholar] [CrossRef]
- Espinasse, M.; Pitre-Champagnat, S.; Charmettant, B.; Bidault, F.; Volk, A.; Balleyguier, C.; Lassau, N.; Caramella, C. CT Texture Analysis Challenges: Influence of Acquisition and Reconstruction Parameters: A Comprehensive Review. Diagnostics 2020, 10, 258. [Google Scholar] [CrossRef] [PubMed]
- Achilli, P.; Magistro, C.; Abd El Aziz, M.A.; Calini, G.; Bertoglio, C.L.; Ferrari, G.; Mari, G.; Maggioni, D.; Peros, G.; Tamburello, S.; et al. Modest Agreement between Magnetic Resonance and Pathological Tumor Regression after Neoadjuvant Therapy for Rectal Cancer in the Real World. Int. J. Cancer 2022, 151, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Crimì, F.; Valeggia, S.; Baffoni, L.; Stramare, R.; Lacognata, C.; Spolverato, G.; Albertoni, L.; Spimpolo, A.; Evangelista, L.; Zucchetta, P.; et al. [18F]FDG PET/MRI in Rectal Cancer. Ann. Nucl. Med. 2021, 35, 281–290. [Google Scholar] [CrossRef]
- Lohmann, P.; Bousabarah, K.; Hoevels, M.; Treuer, H. Radiomics in Radiation Oncology—Basics, Methods, and Limitations. Strahlenther Onkol. 2020, 196, 848–855. [Google Scholar] [CrossRef]
- Robins, M.; Solomon, J.; Hoye, J.; Abadi, E.; Marin, D.; Samei, E. Systematic Analysis of Bias and Variability of Texture Measurements in Computed Tomography. J. Med. Imag. 2019, 6, 033503. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, Y.; Hu, J.; Zhou, W.; Hu, X.; Cui, T.; Yue, N.J.; Sun, X.; Nie, K. Radiomics for the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiation in Locally Advanced Rectal Cancer: A Prospective Observational Trial. Bioengineering 2023, 10, 634. [Google Scholar] [CrossRef]
- Ng, F.; Kozarski, R.; Ganeshan, B.; Goh, V. Assessment of Tumor Heterogeneity by CT Texture Analysis: Can the Largest Cross-Sectional Area Be Used as an Alternative to Whole Tumor Analysis? Eur. J. Radiol. 2013, 82, 342–348. [Google Scholar] [CrossRef]
- Rizzetto, F.; Calderoni, F.; De Mattia, C.; Defeudis, A.; Giannini, V.; Mazzetti, S.; Vassallo, L.; Ghezzi, S.; Sartore-Bianchi, A.; Marsoni, S.; et al. Impact of Inter-Reader Contouring Variability on Textural Radiomics of Colorectal Liver Metastases. Eur Radiol Exp 2020, 4, 62. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Liu, Z.; Guan, M.; Song, J.; Lian, Y.; Wang, S.; Tang, Z.; Dong, D.; Kong, L.; Wang, M.; et al. 2D and 3D CT Radiomics Features Prognostic Performance Comparison in Non-Small Cell Lung Cancer. Transl. Oncol. 2017, 10, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Mirmozaffari, M.; Kamal, N. The Application of Data Envelopment Analysis to Emergency Departments and Management of Emergency Conditions: A Narrative Review. Healthcare 2023, 11, 2541. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, M.M.; Stefanovic, A.D.; Sarac, D.; Kovac, J.; Jankovic, A.; Saponjski, D.J.; Tadic, B.; Kostadinovic, M.; Veselinovic, M.; Sljukic, V.; et al. Possibility of Using Conventional Computed Tomography Features and Histogram Texture Analysis Parameters as Imaging Biomarkers for Preoperative Prediction of High-Risk Gastrointestinal Stromal Tumors of the Stomach. Cancers 2023, 15, 5840. [Google Scholar] [CrossRef]
T1W Axial | T2W Axial | T2W Sagittal | T2W Axial Oblique | T2W Coronal Oblique | DWI | |
---|---|---|---|---|---|---|
Slice thickness | 5 mm | 5 mm | 3.5 mm | 3 mm | 3 mm | 4 mm |
Repetition time (ms) | 688 | 4080 | 3654 | 7074 | 3539 | 3718 |
Echo time (ms) | 14 | 100 | 100 | 85 | 85 | 81 |
Flip angle | 90° | 90° | 90° | 90° | 90° | 90° |
FOV AP (mm) | 440 | 440 | 200 | 200 | 180 | 375 |
rFOV (mm) | 440 | 440 | 200 | 200 | 180 | 312 |
Acquisition matrix | 324 × 253 | 292 × 292 | 252 × 198 | 336 × 251 | 256 × 182 | 124 × 105 |
NSA | 1 | 2 | 2 | 2 | 2 | 2 |
Acquisition time (min) | 1.56 | 1.30 | 4.38 | 5.18 | 3.32 | 4 |
Feature | Corrected B | 95%CIs | p-Value | |
---|---|---|---|---|
min | max | |||
CONVENTIONAL_HUmin | 3.036 | 0.668 | 8.501 | 0.223 |
CONVENTIONAL_HUmean | 2.878 | 2.310 | 10.484 | 0.374 |
CONVENTIONAL_HUstd | 7.517 | 5.739 | 13.945 | 0.722 |
CONVENTIONAL_HUmax | 8.992 | 7.313 | 11.187 | 0.804 |
CONVENTIONAL_HUQ1 | 5.477 | 4.151 | 8.974 | 0.719 |
CONVENTIONAL_HUQ2 | 1.364 | −0.108 | 2.830 | 0.321 |
CONVENTIONAL_HUQ3 | 9.712 | 9.231 | 18.995 | 0.737 |
CONVENTIONAL_HUSkewness | 0.820 | 0.189 | 9.278 | 0.614 |
CONVENTIONAL_HUKurtosis | 0.188 | −1.017 | 8.645 | 0.505 |
CONVENTIONAL_HUExcessKurtosis | 0.614 | −0.162 | 9.541 | 0.517 |
CONVENTIONAL_RIM_HUmin | 4.196 | 1.341 | 12.626 | 0.243 |
CONVENTIONAL_RIM_HUmean | 1.535 | −0.629 | 10.570 | 0.487 |
CONVENTIONAL_RIM_HUstdev | 0.806 | −0.240 | 3.904 | 0.118 |
CONVENTIONAL_RIM_HUmax | 6.472 | 4.698 | 13.486 | 0.150 |
CONVENTIONAL_RIM_HUVolume | 1.388 | −1.068 | 2.757 | 0.624 |
CONVENTIONAL_RIM_HUsum | 2.821 | 2.188 | 8.599 | 0.289 |
DISCRETIZED_HUmin | 8.502 | 5.741 | 11.940 | 0.218 |
DISCRETIZED_HUmean | 9.902 | 9.656 | 12.522 | 0.422 |
DISCRETIZED_HUstd | 2.017 | −0.579 | 2.401 | 0.531 |
DISCRETIZED_HUmax | 8.695 | 8.629 | 15.429 | 0.564 |
DISCRETIZED_HUQ1 | 7.514 | 7.486 | 15.391 | 0.804 |
DISCRETIZED_HUQ2 | 4.075 | 3.359 | 5.998 | 0.833 |
DISCRETIZED_HUQ3 | 3.725 | 3.075 | 6.441 | 0.589 |
DISCRETIZED_HUSkewness | 8.166 | 5.583 | 12.949 | 0.523 |
DISCRETIZED_HUKurtosis | 6.760 | 4.352 | 16.595 | 0.700 |
DISCRETIZED_HUExcessKurtosis | 6.552 | 3.918 | 12.059 | 0.691 |
DISCRETIZED_HISTO_Entropy_log10 | 0.362 | −1.382 | 6.493 | 0.638 |
DISCRETIZED_HISTO_Entropy_log2 | 8.331 | 7.691 | 10.428 | 0.003 |
DISCRETIZED_HISTO_Energy [=Uniformity] | 2.476 | 2.443 | 2.938 | 0.458 |
DISCRETIZED_AUC_CSH | 2.439 | 1.332 | 11.129 | 0.306 |
DISCRETIZED_RIM_HUmin | 0.106 | −1.466 | 4.483 | 0.237 |
DISCRETIZED_RIM_HUmean | 0.384 | 0.268 | 3.570 | 0.197 |
DISCRETIZED_RIM_HUstdev | 4.724 | 2.375 | 14.204 | 0.736 |
DISCRETIZED_RIM_HUmax | 6.381 | 3.834 | 15.313 | 0.093 |
DISCRETIZED_RIM_HUsum | 9.291 | 6.646 | 12.168 | 0.274 |
Feature | Corrected B | 95%CIs | p-Value | |
---|---|---|---|---|
min | max | |||
GLCM_Homogeneity [=InverseDifference] | 9.072 | 7.946 | 18.357 | 0.004 |
GLCM_Energy [=AngularSecondMoment] | 0.998 | −0.288 | 5.901 | 0.157 |
GLCM_Contrast [=Variance] | 6.626 | 5.163 | 13.350 | 0.839 |
GLCM_Correlation | 8.534 | 7.282 | 8.676 | 0.345 |
GLCM_Entropy_log10 | 2.059 | 1.633 | 7.999 | 0.512 |
GLCM_Entropy_log2 [=JointEntropy] | 4.273 | 3.064 | 12.434 | 0.196 |
GLCM_Dissimilarity | 3.204 | 2.095 | 9.535 | 0.743 |
GLRLM_SRE | 0.615 | −0.237 | 4.620 | 0.702 |
GLRLM_LRE | 5.991 | 4.491 | 6.086 | 0.158 |
GLRLM_LGRE | 4.996 | 2.451 | 7.431 | 0.864 |
GLRLM_HGRE | 7.530 | 7.448 | 13.936 | 0.790 |
GLRLM_SRLGE | 2.308 | 0.622 | 12.014 | 0.781 |
GLRLM_SRHGE | 4.137 | 1.385 | 12.582 | 0.570 |
GLRLM_LRLGE | 6.632 | 5.665 | 8.221 | 0.503 |
GLRLM_LRHGE | 5.604 | 3.657 | 14.327 | 0.123 |
GLRLM_GLNU | 3.500 | 3.291 | 10.624 | 0.365 |
GLRLM_RLNU | 8.220 | 7.394 | 16.867 | 0.363 |
GLRLM_RP | 3.720 | 1.268 | 12.588 | 0.300 |
NGLDM_Coarseness | 6.948 | 4.251 | 10.424 | 0.800 |
NGLDM_Contrast | 5.190 | 3.675 | 12.618 | 0.526 |
NGLDM_Busyness | 5.084 | 2.787 | 6.938 | 0.557 |
GLZLM_SZE | 8.786 | 6.138 | 15.255 | 0.749 |
GLZLM_LZE | 2.380 | 0.877 | 8.874 | 0.851 |
GLZLM_LGZE | 0.231 | 0.134 | 9.652 | 0.061 |
GLZLM_HGZE | 0.028 | −0.204 | 1.988 | 0.802 |
GLZLM_SZLGE | 2.404 | 0.899 | 8.676 | 0.422 |
GLZLM_SZHGE | 6.937 | 6.366 | 15.250 | 0.851 |
GLZLM_LZLGE | 6.041 | 3.873 | 8.421 | 0.784 |
GLZLM_LZHGE | 0.314 | −0.525 | 9.400 | 0.543 |
GLZLM_GLNU | 0.271 | −1.708 | 3.410 | 0.213 |
GLZLM_ZLNU | 6.650 | 4.799 | 12.793 | 0.316 |
GLZLM_ZP | 2.594 | 1.510 | 11.939 | 0.498 |
Histo_Entropy_log2 | GLCM_Homogeneity | |
---|---|---|
Sensitivity (95%CIs) | 80% (74–83%) | 86% (80–90%) |
Specificity (95%CIs) | 63% (58–69%) | 67% (60–71%) |
PPV (95%CIs) | 77% (80–81%) | 81% (76–84%) |
NPV (95%CIs) | 82% (80–85%) | 88% (84–90%) |
Accuracy (95%CIs) | 77.5% (70–80.1%) | 77.9% (77.1–81.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariani, I.; Maino, C.; Giandola, T.P.; Franco, P.N.; Drago, S.G.; Corso, R.; Talei Franzesi, C.; Ippolito, D. Texture Analysis and Prediction of Response to Neoadjuvant Treatment in Patients with Locally Advanced Rectal Cancer. Gastrointest. Disord. 2024, 6, 858-870. https://doi.org/10.3390/gidisord6040060
Mariani I, Maino C, Giandola TP, Franco PN, Drago SG, Corso R, Talei Franzesi C, Ippolito D. Texture Analysis and Prediction of Response to Neoadjuvant Treatment in Patients with Locally Advanced Rectal Cancer. Gastrointestinal Disorders. 2024; 6(4):858-870. https://doi.org/10.3390/gidisord6040060
Chicago/Turabian StyleMariani, Ilaria, Cesare Maino, Teresa Paola Giandola, Paolo Niccolò Franco, Silvia Girolama Drago, Rocco Corso, Cammillo Talei Franzesi, and Davide Ippolito. 2024. "Texture Analysis and Prediction of Response to Neoadjuvant Treatment in Patients with Locally Advanced Rectal Cancer" Gastrointestinal Disorders 6, no. 4: 858-870. https://doi.org/10.3390/gidisord6040060
APA StyleMariani, I., Maino, C., Giandola, T. P., Franco, P. N., Drago, S. G., Corso, R., Talei Franzesi, C., & Ippolito, D. (2024). Texture Analysis and Prediction of Response to Neoadjuvant Treatment in Patients with Locally Advanced Rectal Cancer. Gastrointestinal Disorders, 6(4), 858-870. https://doi.org/10.3390/gidisord6040060