Acute Psychological Stress Detection Using Explainable Artificial Intelligence for Automated Insulin Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Experiment Protocol
2.2. Data Preprocessing Pipeline
2.3. Explainable Machine Learning for APS Detection
2.3.1. Imbalanced Data Handling
2.3.2. XGBoost Model Training
2.3.3. SHAP Interpretation Technique
3. Results
3.1. XGBoost Model Performance
3.2. Model Interpretation Using SHAP
3.3. Independent Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APS | Acute Psychological Stress |
SHAP | Shapley Additive Explanations |
GSR | Galvanic Skin Response |
HR | Heart Rate |
T1D | Type 1 Diabetes |
AID | Automated Insulin Delivery |
ML | Machine Learning |
XGBoost | Extreme Gradient Boosting |
LIME | Local Interpretable Model-Agnostic Explanations |
NS | Non-Stress |
MS | Mental Stress |
EAS | Exciting Anxiety Stress |
PPG | Photoplethysmogram |
BVP | Blood Volume Pulse |
ST | Skin Temperature |
ACC | Accelerometer |
EDA | Electrodermal Activity |
SCL | Skin Conductance Level |
SCR | Skin Conductance Response |
References
- Marcovecchio, M.L.; Chiarelli, F. The effects of acute and chronic stress on diabetes control. Sci. Signal. 2012, 5, pt10. [Google Scholar] [CrossRef] [PubMed]
- Skyler, J.S.; Bergenstal, R.; Bonow, R.O.; Buse, J.; Deedwania, P.; Gale, E.A.; Howard, B.V.; Kirkman, M.S.; Kosiborod, M.; Reaven, P.; et al. Intensive glycemic control and the prevention of cardiovascular events: Implications of the ACCORD, ADVANCE, and VA diabetes trials. Diabetes Care 2009, 32, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Gonder-Frederick, L.A.; Grabman, J.H.; Kovatchev, B.; Brown, S.A.; Patek, S.; Basu, A.; Pinsker, J.E.; Kudva, Y.C.; Wakeman, C.A.; Dassau, E.; et al. Is Psychological Stress a Factor for Incorporation into Future Closed-Loop Systems? J. Diabetes Sci. Technol. 2016, 10, 640–646. [Google Scholar] [CrossRef]
- Kesavadev, J.; Saboo, B.; Krishna, M.B.; Krishnan, G. Evolution of Insulin Delivery Devices: From Syringes, Pens, and Pumps to DIY Artificial Pancreas. Diabetes Ther. 2020, 11, 1251–1269. [Google Scholar] [CrossRef] [PubMed]
- Dermawan, D.; Purbayanto, M.A.K. An overview of advancements in closed-loop artificial pancreas system. Heliyon 2022, 8, E11648. [Google Scholar] [CrossRef] [PubMed]
- Peyser, T.; Dassau, E.; Breton, M.; Skyler, J.S. The artificial pancreas: Current status and future prospects in the management of diabetes. Ann. N. Y. Acad. Sci. 2014, 1311, 102–123. [Google Scholar] [CrossRef]
- Nwokolo, M.; Hovorka, R. The Artificial Pancreas and Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2023, 108, 1614–1623. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, G.; Sharma, M. A comprehensive review and analysis of supervised-learning and soft computing techniques for stress diagnosis in humans. Comput. Biol. Med. 2021, 134, 104450. [Google Scholar] [CrossRef]
- Assabumrungrat, R.; Sangnark, S.; Charoenpattarawut, T.; Polpakdee, W.; Sudhawiyangkul, T.; Boonchieng, E.; Wilaiprasitporn, T. Ubiquitous Affective Computing: A Review. IEEE Sensors J. 2022, 22, 1867–1881. [Google Scholar] [CrossRef]
- Giannakakis, G.; Pediaditis, M.; Manousos, D.; Kazantzaki, E.; Chiarugi, F.; Simos, P.G.; Marias, K.; Tsiknakis, M. Stress and anxiety detection using facial cues from videos. Biomed. Signal Process. Control. 2017, 31, 89–101. [Google Scholar] [CrossRef]
- Sevil, M.; Rashid, M.; Askari, M.R.; Maloney, Z.; Hajizadeh, I.; Cinar, A. Detection and Characterization of Physical Activity and Psychological Stress from Wristband Data. Signals 2020, 1, 11. [Google Scholar] [CrossRef]
- Abdel-Latif, M.; Askari, M.R.; Rashid, M.M.; Park, M.; Sharp, L.; Quinn, L.; Cinar, A. Multi-Task Classification of Physical Activity and Acute Psychological Stress for Advanced Diabetes Treatment. Signals 2023, 4, 167–192. [Google Scholar] [CrossRef]
- Askari, M.R.; Abdel-Latif, M.; Rashid, M.; Sevil, M.; Cinar, A. Detection and Classification of Unannounced Physical Activities and Acute Psychological Stress Events for Interventions in Diabetes Treatment. Algorithms 2022, 15, 352. [Google Scholar] [CrossRef]
- Lee, M.H.; Yang, G.; Lee, H.K.; Bang, S. Development Stress Monitoring System Based on Personal Digital Assistant (PDA). In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; Volume 26. [Google Scholar] [CrossRef]
- Blechert, J.; Lajtman, M.; Michael, T.; Margraf, J.; Wilhelm, F.H. Identifying anxiety states using broad sampling and advanced processing of peripheral physiological information. Biomed. Sci. Instrum. 2006, 42, 136–141. [Google Scholar]
- Giannakakis, G.; Grigoriadis, D.; Giannakaki, K.; Simantiraki, O.; Roniotis, A.; Tsiknakis, M. Review on Psychological Stress Detection Using Biosignals. IEEE Trans. Affect. Comput. 2022, 13, 440–460. [Google Scholar] [CrossRef]
- Healey, J.A.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?” Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016. [Google Scholar] [CrossRef]
- Guidotti, R.; Monreale, A.; Ruggieri, S.; Pedreschi, D.; Turini, F.; Giannotti, F. Local Rule-Based Explanations of Black Box Decision Systems. CoRR 2018, arXiv:1805.10820. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4766–4775. [Google Scholar] [CrossRef]
- Nohara, Y.; Matsumoto, K.; Soejima, H.; Nakashima, N. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput. Methods Programs Biomed. 2022, 214, 106584. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar] [CrossRef]
- E4 Wristband | Real-Time Physiological Signals. 2024. Available online: https://www.empatica.com/research/e4/ (accessed on 30 March 2024).
- Data Streaming Packets. 2024. Available online: https://developer.empatica.com/windows-streaming-server-data.html (accessed on 30 March 2024).
- Setz, C.; Arnrich, B.; Schumm, J.; Marca, R.L.; Tröster, G.; Ehlert, U. Discriminating stress from cognitive load using a wearable eda device. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 410–417. [Google Scholar] [CrossRef]
- Banos, O.; Galvez, J.M.; Damas, M.; Pomares, H.; Rojas, I. Window size impact in human activity recognition. Sensors 2014, 14, 6474. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.; et al. Scikit-Learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Zhang, H.; Si, S.; Hsieh, C.J. GPU-Acceleration for Large-Scale Tree Boosting. arXiv 2017, arXiv:1706.08359. [Google Scholar] [CrossRef]
- Shapley, L.S. A Value for n-Person Games; Princeton University Press: Princeton, NJ, USA, 1953; pp. 307–317. [Google Scholar] [CrossRef]
- Ren, P.; Barreto, A.; Gao, Y.; Adjouadi, M. Affective assessment by digital processing of the pupil diameter. IEEE Trans. Affect. Comput. 2013, 4, 2–14. [Google Scholar] [CrossRef]
- Nomikos, M.S.; Opton, E.; Averill, J.R. Surprise versus Suspense in the Production of Stress Reaction. J. Personal. Soc. Psychol. 1968, 8, 204–208. [Google Scholar] [CrossRef]
- Lanzetta, J.T.; Cartwright-Smith, J.; Eleck, R.E. Effects of nonverbal dissimulation on emotional experience and autonomic arousal. J. Personal. Soc. Psychol. 1976, 33, 354–370. [Google Scholar] [CrossRef]
- Saric, R.H.; Mcleod, D.R.; Zimmerli, W.D. Somatic Manifestations in Women with Generalized Anxiety Disorder: Psychophysiological Responses to Psychological Stress. Arch. Gen. Psychiatry 1989, 46, 1113–1119. [Google Scholar] [CrossRef]
- Giakoumis, D.; Drosou, A.; Cipresso, P.; Tzovaras, D.; Hassapis, G.; Gaggioli, A.; Riva, G. Using Activity-Related Behavioural Features towards More Effective Automatic Stress Detection. PLoS ONE 2012, 7, e43571. [Google Scholar] [CrossRef]
- Ritz, T.; Steptoe, A.; DeWilde, S.; Costa, M. Emotions and stress increase respiratory resistance in asthma. Psychosom. Med. 2000, 62, 401–412. [Google Scholar] [CrossRef]
- Reinhardt, T.; Schmahl, C.; Wüst, S.; Bohus, M. Salivary cortisol, heart rate, electrodermal activity and subjective stress responses to the Mannheim Multicomponent Stress Test (MMST). Psychiatry Res. 2012, 198, 106–111. [Google Scholar] [CrossRef]
- Dawson, M.E.; Schell, A.M.; Filion, D.L. The Electrodermal System. In Handbook of Psychophysiology, 4th ed.; Cacioppo, J.T., Tassinary, L.G., Berntson, G.G., Eds.; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar] [CrossRef]
- Sharma, N.; Gedeon, T. Objective measures, sensors and computational techniques for stress recognition and classification: A survey. Comput. Methods Programs Biomed. 2012, 108, 1287–1301. [Google Scholar] [CrossRef] [PubMed]
- Engert, V.; Merla, A.; Grant, J.A.; Cardone, D.; Tusche, A.; Singer, T. Exploring the use of thermal infrared imaging in human stress research. PLoS ONE 2014, 9, 1287–1301. [Google Scholar] [CrossRef]
- Vinkers, C.H.; Penning, R.; Hellhammer, J.; Verster, J.C.; Klaessens, J.H.; Olivier, B.; Kalkman, C.J. The effect of stress on core and peripheral body temperature in humans. Stress 2013, 16, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Krantz, G.; Forsman, M.; Lundberg, U. Consistency in physiological stress responses and electromyographic activity during induced stress exposure in women and men. Integr. Physiol. Behav. Sci. 2004, 39, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Finsen, L.; Søgaard, K.; Jensen, C.; Borg, V.; Christensen, H. Muscle activity and cardiovascular response during computer-mouse work with and without memory demands. Ergonomics 2001, 44, 1312–1329. [Google Scholar] [CrossRef] [PubMed]
- Acerbi, G.; Rovini, E.; Betti, S.; Tirri, A.; Rónai, J.F.; Sirianni, A.; Agrimi, J.; Eusebi, L.; Cavallo, F. A wearable system for stress detection through physiological data analysis. In Ambient Assisted Living: Italian Forum; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; Volume 426. [Google Scholar] [CrossRef]
- Ring, C.; Burns, V.E.; Carroll, D. Shifting hemodynamics of blood pressure control during prolonged mental stress. Psychophysiology 2002, 39, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Steptoe, A.; Willemsen, G.; Owen, N.; Flower, L.; Mohamed-Ali, V. Acute mental stress elicits delayed increases in circulating inflammatory cytokine levels. Clin. Sci. 2001, 101, 185–192. [Google Scholar] [CrossRef]
- Moriguchi, A.; Otsuka, A.; Kohara, K.; Mikami, H.; Katahira, K.; Tsunetoshi, T.; Higashimori, K.; Ohishi, M.; Yo, Y.; Ogihara, T. Spectral change in heart rate variability in response to mental arithmetic before and after the beta-adrenoceptor blocker, carteolol. Clin. Auton. Res. 1992, 2, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Tugade, M.M.; Fredrickson, B.L. Resilient Individuals Use Positive Emotions to Bounce Back From Negative Emotional Experiences. J. Personal. Soc. Psychol. 2004, 86, 320–333. [Google Scholar] [CrossRef]
- Schubert, C.; Lambertz, M.; Nelesen, R.A.; Bardwell, W.; Choi, J.B.; Dimsdale, J.E. Effects of stress on heart rate complexity-A comparison between short-term and chronic stress. Biol. Psychol. 2009, 80, 325–332. [Google Scholar] [CrossRef]
- Lima, R.; Osório, D.; Gamboa, H. Heart rate variability and electrodermal activity in mental stress aloud: Predicting the outcome. In Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019), Prague, Czech Republic, 22–24 February 2019. [Google Scholar] [CrossRef]
- Clays, E.; Bacquer, D.D.; Crasset, V.; Kittel, F.; Smet, P.D.; Kornitzer, M.; Karasek, R.; Backer, G.D. The perception of work stressors is related to reduced parasympathetic activity. Int. Arch. Occup. Environ. Health 2011, 84, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Lackner, H.K.; Papousek, I.; Batzel, J.J.; Roessler, A.; Scharfetter, H.; Hinghofer-Szalkay, H. Phase synchronization of hemodynamic variables and respiration during mental challenge. Int. J. Psychophysiol. 2011, 79, 401–409. [Google Scholar] [CrossRef] [PubMed]
- van Lien, R.; Neijts, M.; Willemsen, G.; Geus, E.J.D. Ambulatory measurement of the ECG T-wave amplitude. Psychophysiology 2015, 52, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Marazziti, D.; Muro, A.D.; Castrogiovanni, P. Psychological stress and body temperature changes in humans. Physiol. Behav. 1992, 52, 393–395. [Google Scholar] [CrossRef]
- Rimm-Kaufman, S.E.; Kagan, J. The psychological significance of changes in skin temperature. Motiv. Emot. 1996, 20, 63–78. [Google Scholar] [CrossRef]
- Palanisamy, K.; Murugappan, M.; Yaacob, S. Descriptive analysis of skin temperature variability of sympathetic nervous system activity in stress. J. Phys. Ther. Sci. 2012, 24, 1341–1344. [Google Scholar] [CrossRef]
- Mozos, O.M.; Sandulescu, V.; Andrews, S.; Ellis, D.; Bellotto, N.; Dobrescu, R.; Ferrandez, J.M. Stress detection using wearable physiological and sociometric sensors. Int. J. Neural Syst. 2017, 27, 1650041. [Google Scholar] [CrossRef]
Number of Subjects | Number of Experiments | |
---|---|---|
NS | 6 | 28 |
APS | 10 | 61 |
Demographic Variable | Mean | Min–Max |
---|---|---|
Age (years) | 25.0 | 20–31 |
Max HR (bpm) | 195.0 | 189.0–200.0 |
Biosignals | Frequency |
---|---|
BVP | 64 Hz |
ACC | 32 Hz |
GSR | 4 Hz |
ST | 4 Hz |
HR | 1 Hz |
Metric | APS | NS |
---|---|---|
Precision (%) | 99.95 | 99.83 |
Recall (%) | 99.97 | 99.66 |
F1-score (%) | 99.96 | 99.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Latif, M.M.; Rashid, M.M.; Askari, M.R.; Shahidehpour, A.; Ahmadasas, M.; Park, M.; Sharp, L.; Quinn, L.; Cinar, A. Acute Psychological Stress Detection Using Explainable Artificial Intelligence for Automated Insulin Delivery. Signals 2024, 5, 494-507. https://doi.org/10.3390/signals5030026
Abdel-Latif MM, Rashid MM, Askari MR, Shahidehpour A, Ahmadasas M, Park M, Sharp L, Quinn L, Cinar A. Acute Psychological Stress Detection Using Explainable Artificial Intelligence for Automated Insulin Delivery. Signals. 2024; 5(3):494-507. https://doi.org/10.3390/signals5030026
Chicago/Turabian StyleAbdel-Latif, Mahmoud M., Mudassir M. Rashid, Mohammad Reza Askari, Andrew Shahidehpour, Mohammad Ahmadasas, Minsun Park, Lisa Sharp, Lauretta Quinn, and Ali Cinar. 2024. "Acute Psychological Stress Detection Using Explainable Artificial Intelligence for Automated Insulin Delivery" Signals 5, no. 3: 494-507. https://doi.org/10.3390/signals5030026
APA StyleAbdel-Latif, M. M., Rashid, M. M., Askari, M. R., Shahidehpour, A., Ahmadasas, M., Park, M., Sharp, L., Quinn, L., & Cinar, A. (2024). Acute Psychological Stress Detection Using Explainable Artificial Intelligence for Automated Insulin Delivery. Signals, 5(3), 494-507. https://doi.org/10.3390/signals5030026