The Metaverse as a Virtual Model of Platform Urbanism: Its Converging AIoT, XReality, Neurotech, and Nanobiotech and Their Applications, Challenges, and Risks
Abstract
:1. Introduction
2. Related Work
3. Methodology
- Reviewing multidisciplinary literature on the different paradigms of urbanism. The aim is to deconstruct a multidisciplinary text related to the Metaverse as a virtual model of platform urbanism. The outcome of this process are numerous themes that are associated with the underlying components of the Metaverse.
- Recognizing patterns in seemingly random information. The aim is to note major patterns and concepts within the results of the first step. This step looks for similarities within the sample and then codes the results by concepts. Coding entails identifying passages of text that are linked by common themes, allowing to index the text into categories and thus establish a framework of thematic ideas about it. The preliminary codes identified are the features of data that appear meaningful and interesting, and the relevant data extracts are sorted according to the overarching themes. It is important to allude to the relationship between codes and themes.
- Revising themes is intended to combine, separate, refine, or discard initial themes. The data within the identified themes should cohere together meaningfully and be clear and identifiable as regards the distinction between these themes.
- Identifying the components of the Metaverse as an envisioned virtual model of platform urbanism involves recognizing the specific and distinctive features of this model.
- Conceptualization is about finding the theoretical relationships between the Metaverse and the identified themes.
- Highlighting the key challenges and risks pertaining to the Metaverse based on the thematic and narrative synthesis.
- Transforming the analysis and synthesis into an interpretable piece of writing by using vivid and compelling data extracts that relate to the overarching themes and social scientific literature. The outcome must go beyond a mere description of the preconceived themes and portray an analysis supported by further theoretical and empirical evidence.
4. Thematic Analysis and Synthesis
4.1. Platformization and Urbanism Paradigms
4.1.1. Platformization and Its Underlying Processes
4.1.2. Platform Urbanism
- Platform infrastructures rely on dense socio-technical assemblages, including a large number of providers, users, and technology companies, and platforms are typically constructed to be scalable to multiple urban environments (and thus virtual environments).
- Platform providers “offer an attractive, digitally enabled interface between service producers and consumers, which can be layered upon, embedded in, and applied across multiple urban contexts [and virtual contexts]. To offer opportunity for investment and stakeholder returns, based on a scalable business model… Users…obtain/consume services through an integrated portal and in prompt, convenient fashion; to engage in complementary social interactions”.
- Digital and data-driven technologies constitute the backbone of platforms in terms of analyzing the real-time data collected from users and partners to connect them in the most optimal configurations.
4.1.3. Beyond Virtual Urbanism
4.2. XR and AIoT Technologies and Their Convergence
4.2.1. XR Technologies: VR, AR, and MR
4.2.2. The Convergence of AIoT and XR Technologies
4.3. Game-Changing Technologies
4.3.1. Neurotechnology
Characteristics, Categories, and Methods
- Neurostimulation, which stimulates the human brain and nervous system magnetically, electromagnetically, or electrically in order to influence brain activities.
- Neurodevices, which, by means of a neural implant, monitor and regulate brain activities.
- Brain imaging, which records magnetic fields generated by the electrical activity within the human brain for mapping purposes.
Emerging Applications
- Learning and cognition.
- Work efficiency.
- Monitoring and tracking.
- Surveillance and control.
- Supervision and governance.
- Powering and assisting user immersive devices by mind control.
- Thought-to-text as writing functions.
- Communication intent to behavior as performing functions.
4.3.2. Nanobiotechnology
Characteristics and Subfields
Devices and Mechanisms
Emerging Applications: MIoT and Nanoparticles
4.4. A Conceptual Framework for the Metaverse as a Virtual Model of Platform Urbanism
4.5. Challenges and Risks
4.5.1. AIoT and XR Technologies
4.5.2. Neurotechnology
4.5.3. Nanobiotechnology: Biometrics and mRNA
5. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bibri, S.; Krogstie, J.; Kaboli, A.; Alahi, A. AI and AIoT applications for emerging smarter eco-cities: A unified evidence synthesis approach to a State-of-the-Art Review. Environ. Sci. Eco-Technol. 2023, in press. [Google Scholar]
- Baker, S.; Xiang, W. Artificial Intelligence of Things for Smarter Healthcare: A Survey of Advancements, Challenges, and Opportunities. IEEE Commun. Surv. Tutor. 2023. early access. [Google Scholar] [CrossRef]
- Huynh-The, T.; Pham, Q.V.; Pham, X.Q.; Nguyen, T.T.; Han, Z.; Kim, D.-S. Artificial intelligence for the metaverse: A survey. Eng. Appl. Artif. Intell. 2023, 117, 105581. [Google Scholar] [CrossRef]
- Bibri, S.E. The Social Shaping of the Metaverse as an Alternative to the Imaginaries of Data-Driven Smart Cities: A Study in Science, Technology, and Society. Smart Cities 2022, 5, 832–874. [Google Scholar] [CrossRef]
- Caprotti, F.; Chang, I.-C.C.; Joss, S. Beyond the smart city: A typology of platform urbanism. Urban Transform. 2022, 4, 1–21. [Google Scholar] [CrossRef]
- Han, H.; Hawken, S. Introduction: Innovation and identity in next-generation smart cities. City Cult. Soc. 2018, 12, 1–4. [Google Scholar] [CrossRef]
- Kitchin, R.; Thrift, N. International Encyclopedia of Human Geography; Elsevier: Oxford, UK, 2009; pp. 106–111. [Google Scholar]
- Bibri, S.E.; Alexandre, A.; Sharifi, A.; Krogstie, J. Environmentally sustainable smart cities and their converging AI, IoT, and big data technologies and solutions: An integrated approach to an extensive literature review. Energy Inf. 2023, 6, 9. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Desouza, K.C.; Butler, L.; Roozkhosh, F. Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef]
- Winter, M.; Tomko, S. Beyond digital twins—A commentary. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 395–399. [Google Scholar]
- Dalton, C.M. Rhizomatic data assemblages: Mapping new possibilities for urban housing data. Urban Geogr. 2019, 41, 1090–1108. [Google Scholar] [CrossRef]
- Kitchin, R.; Lauriault, T. Toward Critical Data Studies: Charting and Unpacking Data Assemblages and Their Work. In Thinking Big Data in Geography: New Regimes, New Research; Thatcher, J., Shears, A., Eckert, J., Eds.; University of Ne-braska Press: Lincoln, NB, USA, 2018; pp. 3–30. [Google Scholar]
- Barns, S. Platform Urbanism: Negotiating Platform Ecosystems in Connected Cities; Palgrave Macmillan: Singapore, 2020. [Google Scholar]
- Langley, P.; Leyshon, A. Platform capitalism: The intermediation and capitalization of digital economic circulation. Financ. Soc. 2017, 3, 11–31. [Google Scholar] [CrossRef]
- Dellermann, D.; Ebel, P.; Söllner, M.; Leimeister, J.M. Hybrid Intelligence. Bus. Inf. Syst. Eng. 2019, 61, 637–643. [Google Scholar] [CrossRef]
- Bickenbach, J. Human Functioning: Developments and Grand Challenges. Front. Rehabil. Sci. 2021, 1, 617782. [Google Scholar] [CrossRef] [PubMed]
- World Economic Forum. Tracking How Our Bodies Work Could Change Our Lives. 2020. Available online: https://www.weforum.org/agenda/2020/06/internet-of-bodies-covid19-recovery-governance-health-data/ (accessed on 10 April 2023).
- Bostrom, N. Superintelligence. Traduction: Françoise Parot; Dunod: Paris, France, 2017. [Google Scholar]
- Bina, O.; Inch, A.; Pereira, L. Beyond techno-utopia and its discontents: On the role of utopianism and speculative fiction in shaping alternatives to the smart city imaginary. Futures 2019, 115, 102475. [Google Scholar] [CrossRef]
- Sherson, J. An Introduction to Hybrid Intelligence. Available online: https://exfluency.com/an-introduction-to-hybrid-intelligence/ (accessed on 20 November 2022).
- Allam, Z. Biotechnology to Render Future Cities as Living and Intelligent Organisms. In Biotechnology and Future Cities: Toward Sustainability, Resilience and Living Urban Organisms; Allam, Z., Ed.; Springer: Cham, Switzerland, 2020; pp. 1–15. [Google Scholar]
- Farah, M.J. An Ethics Toolbox for Neurotechnology. Neuron 2015, 86, 34–37. [Google Scholar] [CrossRef]
- Fakruddin, M.; Hossain, Z.; Afroz, H. Prospects and applications of nanobiotechnology: A medical perspective. J. Nanobiotechnol. 2012, 10, 31. [Google Scholar] [CrossRef]
- Dhiman, S.; Gaba, S.; Varma, A.; Goel, A. Bio-nanosensors: Synthesis and Their Substantial Role in Agriculture. In Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems; Springer: Cham, Switzerland, 2021; pp. 165–172. [Google Scholar] [CrossRef]
- Garden, H.; Bowman, D.M.; Haesler, S.; Winickoff, D.E. Neurotechnology and Society: Strengthening Responsible Innovation in Brain Science. Neuron 2016, 92, 642–646. [Google Scholar] [CrossRef]
- Ienca, M. On Neurorights. Front. Hum. Neurosci. 2021, 15, 701258. [Google Scholar] [CrossRef]
- Ienca, M.; Andorno, R. Towards new human rights in the age of neuroscience and neurotechnology. Life Sci. Soc. Policy 2017, 13, 1–27. [Google Scholar] [CrossRef]
- de Albuquerque, V.H.C.; Athanasiou, A.; Ribeiro, S. Neurotechnology: Methods, Advances and Applications; The Institution of Engineering and Technology: London, UK, 2020. [Google Scholar]
- De Ridder, D.; Maciaczyk, J.; Vanneste, S. The future of neuromodulation: Smart neuromodulation. Expert Rev. Med. Devices 2021, 18, 307–317. [Google Scholar] [CrossRef]
- Müller, O.; Rotter, S. Neurotechnology: Current Developments and Ethical Issues. Front. Syst. Neurosci. 2017, 11, 93. [Google Scholar] [CrossRef]
- Pugliese, J. Biometrics: Bodies, Technologies, Biopolitics; Routledge: New York, NY, USA, 2010. [Google Scholar]
- Rainey, S.; Martin, S.; Christen, A.; Mégevand, P.; Fourneret, E. Brain Recording, Mind-Reading, and Neurotechnology: Ethical Issues from Consumer Devices to Brain-Based Speech Decoding. Sci. Eng. Ethics 2020, 26, 2295–2311. [Google Scholar] [CrossRef]
- Van Velthoven EA, M.; Van Stuijvenberg, O.C.; Haselager DR, E.; Broekman, M.; Chen, X.; Roelfsema, P.; Bredenoord, A.L.; Jongsma, K.R. Ethical implications of visual neuroprostheses-a systematic review. J. Neural Eng. 2022, 19, 026055. [Google Scholar] [CrossRef]
- Walker, E.M. Biometric Boom: How the private sector Commodifies Human characteristics. Intellec-Tual Prop. Media Entertain. Law J. 2015, 25, 831. [Google Scholar]
- Yuste, R.; Genser, J.; Herrmann, S. It’s time for neuro-rights. Horizons 2021, 18, 154–165. [Google Scholar]
- Allam, Z.; Sharifi, A.; Bibri, S.E.; Jones, D.S.; Krogstie, J. The Metaverse as a Virtual Form of Smart Cities: Opportunities and Challenges for Environmental, Economic, and Social Sustainability in Urban Futures. Smart Cities 2022, 5, 771–801. [Google Scholar] [CrossRef]
- Dhelim, S.; Kechadi, T.; Chen, L.; Aung, N.; Ning, H.; Atzori, L. Edge-enabled Metaverse: The Convergence of Metaverse and Mobile Edge Computing. arXiv 2022, arXiv:2205.02764. [Google Scholar]
- Dwivedi, Y.K.; Hughes, L.; Baabdullah, A.M.; Ribeiro-Navarrete, S.; Giannakis, M.; Al-Debei, M.M.; Dennehy, D.; Metri, B.; Buhalis, D.; Cheung, C.M.; et al. Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2022, 66, 102542. [Google Scholar] [CrossRef]
- Lee, L.H.; Braud, T.; Zhou, P.; Wang, L.; Xu, D.; Lin, Z.; Kumar, A.; Bermejo, C.; Hui, P. All One Needs to Know about Metaverse: A Complete Survey on Technological Singularity, Virtual Ecosystem, and Research Agenda. arXiv 2021, arXiv:2110.05352. [Google Scholar]
- Ens, B.; Bach, B.; Cordeil, M.; Engelke, U.; Serrano, M.; Willett, W.; Prouzeau, A.; Anthes, C.; Büschel, W.; Dunne, C.; et al. Grand challenges in immersive analytics. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–17. [Google Scholar]
- Kovacev, N. Metaverse and Medicine. In Proceedings of the 2022 IEEE Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, 25–26 May 2022; p. 1. [Google Scholar] [CrossRef]
- Mystakidis, S. Metaverse. Encyclopedia 2022, 2, 486–497. [Google Scholar] [CrossRef]
- Ning, H.; Wang, H.; Lin, Y.; Wang, W.; Dhelim, S.; Farha, F.; Ding, J.; Daneshmand, M. A Survey on Metaverse: The State-of-the- art, Technologies, Applications, and Challenges. arXiv 2021, arXiv:2111.09673. [Google Scholar]
- Weinberger, M.; Gross, D. A Metaverse Maturity Model. Glob. J. Comput. Sci. Technol. 2023, 22, 39–45. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, J.; Chen, R.; Song, Y.; Song, Z.; Zhang, X.; Wang, Q.; Wang, K.; Zhou, C.; Sun, J.; et al. Expert consensus on the metaverse in medicine. Clin. Ehealth 2022, 5, 1–9. [Google Scholar] [CrossRef]
- Strüver, A.; Bauriedl, S. Platformization of Urban Life: Toward a Technocapitalist Transformation of European Cities (Urban Studies); Transcript Verlag: Bielefeld, Germany, 2022; ISBN 978-3-8376-5964-1. [Google Scholar]
- Gelernter, D.H. Mirror Worlds or the Day Software Puts the Universe in a Shoebox: How It Will Happen and What It Will Mean; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Benedikt, M. Introduction. In Cyberspace: First Steps; Benedikt, M., Ed.; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Novak, M. Cyberspace: First Steps. In Liquid Architectures in Cyberspace; Benedikt, M., Ed.; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Aurigi, A. Smart cities, Metaverses, and the Relevance of Place. IET Smart Cities 2022, 4, 157–159. [Google Scholar] [CrossRef]
- Taylor, S.; Soneji, S. Bioinformatics and the Metaverse: Are We Ready? Front. Bioinform. 2022, 2, 863676. [Google Scholar] [CrossRef]
- Bibri, S.E.; Allam, Z. The Metaverse as a virtual form of data-driven smart cities: The ethics of the hyper-connectivity, datafication, algorithmization, and platformization of urban society. Comput. Urban Sci. 2022, 2, 22. [Google Scholar] [CrossRef]
- Jaipong, P.; Siripipattanakul, S.; Sriboonruang, P.; Sitthipon, T. A Review of Metaverse and Cybersecurity in the Digital Era. Int. J. Comput. Sci. Res. 2023, 7, 1125–1132. [Google Scholar]
- Gurov, O. Metaverses for Human or Human for Metaverses. Artif. Soc. 2022, 17, 019011-1. [Google Scholar] [CrossRef]
- Kasiyanto, S.; Kilinc, M.R. The Legal Conundrums of the Metaverse. J. Cent. Bank. Law Inst. 2022, 1, 299–322. [Google Scholar] [CrossRef]
- Pooyandeh, M.; Han, K.-J.; Sohn, I. Cybersecurity in the AI-Based Metaverse: A Survey. Appl. Sci. 2022, 12, 12993. [Google Scholar] [CrossRef]
- Rosenberg, L. Regulation of the Metaverse: A Roadmap. In Proceedings of the 6th International Conference on Virtual and Augmented Reality Simulations (ICVARS 2022), Brisbane, Australia, 25–27 March 2022. [Google Scholar]
- Rosenberg, L.B. The Growing Need for Metaverse Regulation. In Intelligent Systems and Applications: Proceedings of the 2022 Intelligent Systems Conference (IntelliSys) Volume 3; Lecture Notes in Networks and Systems; Arai, K., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Bibri, S.E.; Allam, Z.; Krogstie, J. The Metaverse as a virtual form of data-driven smart urbanism: Platformization and its underlying processes, institutional dimensions, and disruptive impacts. Comput. Urban Sci. 2022, 2, 24. [Google Scholar] [CrossRef]
- Miles, M.B.; Huberman, A.M. Qualitative Data Analysis: An Expanded Source Book, 2nd ed.; Sage: Newbury Park, CA, USA, 1994. [Google Scholar]
- Gough, D.; Oliver, S.; Thomas, J. An Introduction to Systematic Reviews; SAGE Publications: London, UK, 2017. [Google Scholar]
- Lisy, K.; Porritt, K. Narrative Synthesis: Considerations and challenges. Int. J. Evid. Based Health 2016, 14, 201. [Google Scholar] [CrossRef]
- Ecker, Y.A.; Strüver, A. Towards alternative platform futures in post-pandemic cities? A case study on platformization and changing socio-spatial relations in on-demand food delivery. Digit. Geogr. Soc. 2022, 3, 100032. [Google Scholar] [CrossRef]
- Poell, T.; Nieborg, D.; Van Dijck, J. Platformisation. Internet Policy Rev. 2019, 8, 1–13. [Google Scholar] [CrossRef]
- Sadowski, J. Cyberspace and cityscapes: On the emergence of platform urbanism. Urban Geogr. 2020, 41, 448–452. [Google Scholar] [CrossRef]
- Srnicek, N. Platform Capitalism; Polity Press: Cambridge, UK, 2017. [Google Scholar]
- Danaher, J. The Threat of Algocracy: Reality, Resistance and Accommodation. Philos. Technol. 2016, 29, 245–268. [Google Scholar] [CrossRef]
- Cukier, K.-N.; Mayer-Schöenberger, V. Big Data. A Revolution That Will Transform How We Live, Work, and Think; Haughton Miffin Harcourt: New York, NY, USA, 2013. [Google Scholar]
- van Dijck, J. Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveill. Soc. 2014, 12, 197–208. [Google Scholar] [CrossRef]
- Kitchin, R. The ethics of smart cities and urban science. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20160115. [Google Scholar] [CrossRef]
- Marvin, S.; Luque-Ayala, A.; McFarlane, C. (Eds.) Smart Urbanism: Utopian Vision or False Dawn; Routledge: London, UK, 2015. [Google Scholar]
- Caprotti, F.; Liu, D. Platform urbanism and the Chinese smart city: The co-production and territorialisation of Hangzhou City Brain. Geojournal 2020, 87, 1559–1573. [Google Scholar] [CrossRef]
- Calvo, P. The ethics of Smart City (EoSC): Moral implications of hyperconnectivity, algorithmization and the datafication of urban digital society. Ethic-Inf. Technol. 2019, 22, 141–149. [Google Scholar] [CrossRef]
- Krisch, A. From Smart to Platform Urbanism to Platform Municipalism. In Platformization of Urban Life; Transcript Verlag: Bielefeld, Germany, 2022. [Google Scholar] [CrossRef]
- Van Dijck, J.; Poell, T.; De Waal, M. The Platform Society: Public Values in a Connective World; Oxford University Press: New York, NY, USA, 2018. [Google Scholar]
- Barns, S. Negotiating the platform pivot: From participatory digital ecosystems to infrastructures of everyday life. Geogr. Compass 2019, 13, e12464. [Google Scholar] [CrossRef]
- Graham, M. Regulate, replicate, and resist—The conjunctural geographies of platform urbanism. Urban Geogr. 2020, 41, 453–457. [Google Scholar] [CrossRef]
- Hodson, M.J.; Kasmire, A.; McMeekin, J.; Stehlin, K. Ward Urban Platforms and the Future City: Transformations in Infrastructure, Governance, Knowledge and Everyday Life, 1st ed.; Routledge: London, UK, 2021. [Google Scholar]
- Caprotti, F.; Liu, D. Emerging platform urbanism in China: Reconfigurations of data, citizenship and materialities. Technol. Forecast. Soc. Chang. 2019, 151, 119690. [Google Scholar] [CrossRef]
- Rose, G.; Raghuram, P.; Watson, S.; Wigley, E. Platform urbanism, smartphone applications and valuing data in a smart city. Trans. Inst. Br. Geogr. 2020, 46, 59–72. [Google Scholar] [CrossRef]
- König, P.D. Dissecting the Algorithmic Leviathan: On the Socio-Political Anatomy of Algorithmic Governance. Philos. Technol. 2019, 33, 467–485. [Google Scholar] [CrossRef]
- Noble, S.U. Algorithms of Oppression: How Search Engines Reinforce Racism; New York University Press: New York, NY, USA, 2018. [Google Scholar]
- Srivastava, S. Algorithmic Governance and the International Politics of Big Tech. In Perspectives on Politics; Cambridge University Press: Cambridge, UK, 2021; pp. 1–12. [Google Scholar] [CrossRef]
- Zuboff, S. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power; Profile Books: London, UK, 2019. [Google Scholar]
- Piracha, A.; Sharples, R.; Forrest, J.; Dunn, K. Racism in the sharing economy: Regulatory challenges in a neo-liberal cyber world. Geoforum 2018, 98, 144–152. [Google Scholar] [CrossRef]
- Bibri, S. Data-Driven Smart Sustainable Cities: A Conceptual Framework for Urban Intelligence Functions and Related Processes, Systems, and Sciences. In Advances in the Leading Paradigms of Urbanism and their Amalgamation. Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Fields, D.; Bissell, D.; Macrorie, R. Platform methods: Studying platform urbanism outside the black box. Urban Geogr. 2020, 41, 462–468. [Google Scholar] [CrossRef]
- Lee, A.; MacKenzie, A.; Smith, G.; Box, P. Mapping Platform Urbanism: Charting the Nuance of the Platform Pivot. Urban Plan. 2020, 5, 116–128. [Google Scholar] [CrossRef]
- Leszczynski, A. Glitchy vignettes of platform urbanism. Environ. Plan. D Soc. Space 2019, 38, 189–208. [Google Scholar] [CrossRef]
- Richardson, L. Platforms, Markets, and Contingent Calculation: The Flexible Arrangement of the Delivered Meal. Antipode 2019, 52, 619–636. [Google Scholar] [CrossRef]
- Bibri, S.E. Data-Driven Smart Sustainable Cities of the Future: New Conceptions of and Approaches to the Spatial Scaling of Urban Form. Future Cities Env. 2021, 7, 4. [Google Scholar] [CrossRef]
- Nieborg, D.B.; Helmond, A. The political economy of Facebook’s platformization in the mobile ecosystem: Facebook Messenger as a platform instance. Media Cult. Soc. 2018, 41, 196–218. [Google Scholar] [CrossRef]
- Ienca, M.; Haselager, P.; Emanuel, E.J. Brain leaks and consumer neurotechnology. Nat. Biotechnol. 2018, 36, 805–810. [Google Scholar] [CrossRef]
- Sirc, G. Virtual urbanism. Comput. Compos. 2001, 18, 11–19. [Google Scholar] [CrossRef]
- Zhurkin, M.Y.; Karnaukhov, I.A. Virtual Urban Realm, IOP Conference Series: Materials Science and Engineering. Mater. Sci. Eng. 2018, 463, 042067. [Google Scholar]
- Schieck, A.F.G.; Moutinho, A.M.; Kostopoulou, E.; Freeman, R.; Senevirathne, S.; Grover, C. AUR: Augmented Urban Reality. In Proceedings of the 4th International Symposium on Pervasive Displays, Saarbrücken, Germany, 10–12 June 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 275–276. [Google Scholar] [CrossRef]
- Wilkins, G.; Stiff, A. Hem Realities: Augmenting Urbanism Through Tacit and Immersive Feedback. Arch. Cult. 2019, 7, 505–521. [Google Scholar] [CrossRef]
- Yamu, C.; Poplin, A.; Devisch, O.; De Roo, D. The Virtual and the Real in Planning and Urban Design Perspectives, Practices and Applications; Routledge: London, UK, 2019. [Google Scholar]
- Aurigi, A. Augmented Urban Spaces: Articulating the Physical and Electronic City; Routledge: London, UK, 2016. [Google Scholar] [CrossRef]
- Hemmati, M. The Metaverse: An Urban Revolution Effect of the Metaverse on the Perceptions of Urban Audience Tourism of Culture. Tour. Cult. 2022, 2, 53–60. [Google Scholar]
- Bosworth, A.; Clegg, N. Building the Metaverse Responsibly. 2021. Available online: https://about.fb.com/news/2021/09/building-the-metaverse-responsibly/ (accessed on 20 April 2022).
- Abbott, C. Imagining Urban Futures: Cities in Science Fiction and What We Might Learn from Them; Wesleyan University Press: Middletown, CT, USA, 2016. [Google Scholar]
- Bassett, C.; Steinmueller, E.; Voss, G. Better made up: The mutual influence of science fiction and innovation; NESTA: London, UK, 2013. [Google Scholar]
- Dunn, N.; Cureton, P.; Pollastri, S. A Visual History of the Future; Future of Cities: Working Paper Foresight, Government Office for Science: London, UK, 2014. [Google Scholar]
- Graham, S. Vertical noir: Histories of the future in urban science fiction. City 2016, 20, 389–406. [Google Scholar] [CrossRef]
- Miles, I. Stranger than fiction: How important is science fiction for futures studies? Futures 1993, 25, 315–321. [Google Scholar] [CrossRef]
- Popper, R. Mapping Foresight: Revealing How Europe and Other World Regions Navigate into the Future; Publications Office of the European Union: Luxembourg, 2009; p. 126. [Google Scholar]
- Lawler, D.L. Certain Assistances: The Utilities of Speculative Fictions in Shaping the Future. Mosaic: A. J. Interdiscip. Study Lit. 1980, 13, 1–13. [Google Scholar] [CrossRef]
- Miles, I. Fiction and forecasting. Futures 1990, 22, 83–91. [Google Scholar] [CrossRef]
- Sum, N.L. Toward a cultural political economy: Discourses, material power and (counter-) hegemony; DEMOLOGOS: Newcastle, UK, 2006. [Google Scholar]
- Bibri, S.E. Conceptual, Theoretical, Disciplinary, and Discursive Foundations: A Multidimensional Framework. In Smart Sustainable Cities of the Future. The Urban Book Series; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Slater, M.; Sanchez-Vives, M.V. Enhancing Our Lives with Immersive Virtual Reality. Front. Robot. AI 2016, 3, 74. [Google Scholar] [CrossRef]
- Kelly, J.W.; Cherep, L.A.; Lim, A.F.; Doty, T.; Gilbert, S.B. Who are virtual reality headset owners? a survey and comparison of headset owners and non-owners. In Proceedings of 2021 IEEE Virtual Reality and 3D User Interfaces (VR), Lisboa, Portugal, 27 March–1 April 2021; pp. 687–694. [Google Scholar]
- Bonifacic, I. ‘Project Cambria’ Is a High-End VR Headset Designed for Facebook’s Metaverse. Available online: https://techcrunch.com/2021/10/28/project-cambria-is-a-high-end-vr-headset-designed-for-facebooks-metaverse/ (accessed on 3 December 2021).
- Ibáñez, M.B.; Delgado-Kloos, C. Augmented reality for STEM learning: A systematic review. Comput. Educ. 2018, 123, 109–123. [Google Scholar] [CrossRef]
- Lee, L.H.; Hui, P. Interaction methods for smart glasses: A survey. IEEE Access 2018, 6, 28712–28732. [Google Scholar] [CrossRef]
- Lopes, P.; You, S.; Ion, A.; Baudisch, P. Adding Force Feedback to Mixed Reality Experiences and Games Using Electri- cal Muscle Stimulation. In Proceedings of the 2018 Chi Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–13. [Google Scholar]
- Speicher, M.; Hall, B.D.; Nebeling, M. What is Mixed Reality? In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; ACM: New York, NY, USA, 2019; pp. 1–15. [Google Scholar]
- Ohta, M.; Nagano, S.; Niwa, H.; Yamashita, K. Mixed-reality store on the other side of a tablet [poster]. In Proceedings of the 2015 IEEE International Symposium on Mixed and Augmented Reality, ISMAR ’15, Fukuoka, Japan, 29 September–3 October 2015; pp. 192–193. [Google Scholar]
- Milgram, P.; Takemura, H.; Utsumi, A.; Kishino, F. Augmented reality: A class of displays on the reality-virtuality contin-uum. In Telemanipulator and Telepresence Technologies, Proceedings of the Photonics for Industrial Applications, Boston, MA, USA, 31 October–4 November 1994; Das, H., Ed.; SPIE: Bellingham, WA, USA, 1995; Volume 2351, pp. 282–292. [Google Scholar]
- Skarbez RSmith, M.; Whitton, M.C. Revisiting milgram and kishino’s reality-virtuality continuum. Front. Virtual Real. 2021, 2, 27. [Google Scholar] [CrossRef]
- Pakanen, M.; Alavesa, P.; van Berkel, N.; Koskela, T.; Ojala, T. Nice to see you virtually: Thoughtful design and evaluation of virtual avatar of the other user in AR and VR based telexistence systems. Entertain. Comput. 2021, 40, 100457. [Google Scholar] [CrossRef]
- Weil, C.G.; Bibri, S.E.; Longchamp, R.; Golay, F.; Alahi, A. Urban Digital Twin: Challenges and Perspectives for Sustainable Smart Cities. Sustain. Cities Soc. 2023, in press. [Google Scholar]
- Zhao, Y.; Jiang, J.; Chen, Y.; Liu, R.; Yang, Y.; Xue, X.; Chen, S. Metaverse: Perspectives from graphics, interactions and visualization. Vis. Inform. 2022, 6, 56–67. [Google Scholar] [CrossRef]
- Seng, K.P.; Ang, L.M.; Ngharamike, E. Artificial intelligence Internet of Things: A new paradigm of distributed sensor networks. Int. J. Distrib. Sens. Netw. 2022, 18, 15501477211062835. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, Z.; Zhang, Z.; Shi, Q.; Chen, T.; Liu, H.; Lee, C. Sensory-glove-based human machine interface for augmented real-ity (AR) applications. In Proceedings of the IEEE 33rd International Conference on Micro Electro Mechanical Systems, MEMS; IEEE: Vancouver, BC, Canada, 2020; pp. 16–19. [Google Scholar]
- Hu, Z.; Bulling, A.; Li, S.; Wang, G. Fixationnet: Forecasting eye fixations in task-oriented virtual environments. IEEE Trans. Vis. Comput. Graph. 2021, 27, 2681–2690. [Google Scholar] [CrossRef]
- Weiser, M. The computer for the 21st century. Sci. Am. 1991, 265, 94–104. [Google Scholar] [CrossRef]
- Ren, F. Influence of cognitive neuroscience on contemporary philosophy of science. Transl. Neurosci. 2019, 10, 37–43. [Google Scholar] [CrossRef]
- Donoghue, J. Neurotechnology. In The Future of the Brain; Marcus, G., Freeman, J., Eds.; Princeton University Press: Princeton, NJ, USA, 2015; pp. 275–303. [Google Scholar]
- Guo, B.; Zhang, M.; Hao, W.; Wang, Y.; Zhang, T.; Liu, C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl. Psychiatry 2023, 13, 5. [Google Scholar] [CrossRef]
- Yin, Z.; Wan, Y.; Fang, H.; Li, L.; Wang, T.; Wang, Z.; Tan, D. Bibliometric analysis on Brain-computer interfaces in a 30-year period. Appl. Intell. 2022. early access. [Google Scholar] [CrossRef]
- Cook, M.J.; O’Brien, T.J.; Berkovic, S.F.; Murphy, M.; Morokoff, A.; Fabinyi, G.; D’Souza, W.; Yerra, R.; Archer, J.; Litewka, L.; et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study. Lancet Neurol. 2013, 12, 563–571. [Google Scholar] [CrossRef]
- Krucoff, M.O.; Rahimpour, S.; Slutzky, M.W.; Edgerton, V.R.; Turner, D.A. Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Front. Neurosci. 2016, 10, 584. [Google Scholar] [CrossRef]
- Cinel, C.; Valeriani, D.; Poli, R. Neurotechnologies for human cognitive augmentation: Current state of the art and future prospects. Front. Hum. Neurosci. 2019, 13, 2–24. [Google Scholar] [CrossRef]
- Bernal, S.L.; Celdrán, A.H.; Pérez, G.M.; Barros, M.T.; Balasubramaniam, S. Security in brain-computer interfaces: State-of-the-art, opportunities, and future challenges. ACM Comput. Surv. 2022, 54, 1–35. [Google Scholar] [CrossRef]
- Nicolelis, M.A.L. Brain–machine–brain interfaces as the foundation for the next generation of neuroprostheses. Natl. Sci. Rev. 2021, 9, nwab206. [Google Scholar] [CrossRef]
- Martini, M.L.; Oermann, E.K.; Opie, N.L.; Panov, F.; Oxley, T.; Yaeger, K. Sensor Modalities for Brain-Computer Interface Technology: A Compre-hensive Literature Review. Neurosurgery 2020, 86, E108–E117. [Google Scholar] [CrossRef]
- Goering, S.; Klein, E.; Sullivan, L.S.; Wexler, A.; Arcas, B.A.Y.; Bi, G.; Carmena, J.M.; Fins, J.J.; Friesen, P.; Gallant, J.; et al. Recommendations for Responsible Development and Application of Neurotechnologies. Neuroethics 2021, 14, 365–386. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jung, T.-P. A Collaborative Brain-Computer Interface for Improving Human Performance. PLoS ONE 2011, 6, e20422. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, M.P.; Das, K.; Pham, B.T.; Peterson, M.F.; Abbey, C.K.; Sy, J.L.; Giesbrecht, B. Neural decoding of collective wisdom with multi-brain computing. Neuroimage 2012, 59, 94–108. [Google Scholar] [CrossRef]
- Zhang, J.; Tao, D. Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things. IEEE Internet Things J. 2020, 8, 7789–7817. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Sejnowski, T.J. The Deep Learning Revolution; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Hassabis, D.; Kumaran, D.; Summerfield, C.; Botvinick, M. Neuroscience-Inspired Artificial Intelligence. Neuron 2017, 95, 245–258. [Google Scholar] [CrossRef]
- Kuhner, D.; Fiederer LD, J.; Aldinger, J.; Burget, F.; Völker, M.; Schirrmeister, R.T.; Do, C.; Boedecker, J.; Nebel, B.; Ball, T.; et al. A service assistant combining autonomous robotics, flexible goal formulation, and deep-learning-based brain-computer interfacing. Robot. Auton. Syst. 2019, 116, 98–113. [Google Scholar] [CrossRef]
- Zhang, M.; Hua, Q.; Jia, W.; Chen, R.; Su, H.; Wang, B. Feature extraction and classification algorithm of brain-computer interface based on human brain central nervous system. Neuroquantology 2018, 16, 896–900. [Google Scholar] [CrossRef]
- Xu, M.; Xiao, X.; Wang, Y.; Qi, H.; Jung, T.P.; Ming, D. A brain computer interface based on miniature event-related potentials induced by very small lateral visual stimuli. IEEE Trans. Biomed. Eng. 2018, 65, 1166–1175. [Google Scholar]
- Kellmeyer, P. Big Brain Data: On the Responsible Use of Brain Data from Clinical and Consumer-Directed Neurotechnological Devices. Neuroethics 2018, 14, 83–98. [Google Scholar] [CrossRef]
- Vidal, C. Neurotechnologies under the Eye of Bioethics. Eneuro 2022, 9, 1–3. [Google Scholar] [CrossRef]
- Kohli, V.; Tripathi, U.; Chamola, V.; Rout, B.K.; Kanhere, S.S. A review on Virtual Reality and Augmented Reality use-cases of Brain Computer Interface based applications for smart cities. Microprocess. Microsyst. 2022, 88, 104392. [Google Scholar] [CrossRef]
- Park, S.; Cha, H.-S.; Im, C.-H. Development of an online home appliance control system using augmented reality and an SSVEP-based brain–computer interface. IEEE Access 2019, 7, 163604–163614. [Google Scholar] [CrossRef]
- He, H.; Wu, D. Transfer learning for brain–computer interfaces: A euclidean space data alignment approach. IEEE Trans. Biomed. Eng. 2020, 67, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Majeed, M.I.; Bhatti, H.N.; Nawaz, H.; Kashif, M. Nanobiotechnology: Applications of nanomaterials in biological research. In Integrating Green Chemistry and Sustainable Engineering; Scrivener Publishing LLC: Beverly, MA, USA, 2019; pp. 581–615. [Google Scholar]
- Nussinov, R.; Alemán, C. Nanobiology: From physics and engineering to biology. Phys. Biol. 2016, 3, E01. [Google Scholar] [CrossRef]
- Emerich, D.F.; Thanos, C.G. Nanotechnology and medicine. Expert Opin. Biol. Ther. 2003, 3, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, K.S.; Labhasetwar, V. Nanotechnology approaches to drug delivery and imaging. Drug Discov. Today 2003, 8, 1112–1120. [Google Scholar] [CrossRef]
- Oberdörster, E. Manufactured Nanomaterials (Fullerenes, C60) Induce Oxidative Stress in the Brain of Juvenile Largemouth Bass. Environ. Health Perspect. 2004, 112, 1058–1062. [Google Scholar] [CrossRef]
- El Beheiry, M.; Doutreligne, S.; Caporal, C.; Ostertag, C.; Dahan, M.; Masson, J.-B.; El Beheiry, M.; Doutreligne, S.; Caporal, C.; Ostertag, C.; et al. Virtual Reality: Beyond Visualization. J. Mol. Biol. 2019, 431, 1315–1321. [Google Scholar] [CrossRef]
- Calvelo, M.; Piñeiro, A.; Garcia-Fandino, R. An immersive journey to the molecular structure of SARS-CoV-2: Virtual reality in COVID-19. Comput. Struct. Biotechnol. J. 2020, 18, 2621–2628. [Google Scholar] [CrossRef]
- Venkatesan, M.; Mohan, H.; Ryan, J.R.; Schürch, C.M.; Nolan, G.P.; Frakes, D.H.; Coskun, A.F. Virtual and Augmented Reality for Biomedical Applications. Cell Rep. Med. 2021, 2, 100348. [Google Scholar] [CrossRef]
- Kuett, L.; Catena, R.; Özcan, A.; Plüss, A.; Ali, H.R.; Al Sa’d, M.; Alon, S.; Aparicio, S.; Battistoni, G.; Balasubramanian, S.; et al. Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nat. Cancer 2021, 3, 122–133. [Google Scholar] [CrossRef]
- Legetth, O.; Rodhe, J.; Lang, S.; Dhapola, P.; Wallergård, M.; Soneji, S. CellexalVR: A virtual reality platform to visualize and analyze single-cell omics data. iScience 2021, 24, 103251. [Google Scholar] [CrossRef]
- Pirch, S.; Müller, F.; Iofinova, E.; Pazmandi, J.; Hütter, C.V.R.; Chiettini, M.; Sin, C.; Boztug, K.; Podkosova, I.; Kaufmann, H.; et al. The VRNetzer platform enables interactive network analysis in Virtual Reality. Nat. Commun. 2021, 12, 2432. [Google Scholar] [CrossRef]
- Barabadi, H.; Mostafavi, E.; Saravanan, M. Nanotechnology in the Life Sciences; Springer: Cham, Switzerland, 2022; pp. 489–519. [Google Scholar]
- Min-Dianey KA, A.; Zhang, H.C.; Brohi, A.A.; Yu, H.; Xia, X. Optical spectra of composite silver-porous silicon (Ag-pSi) nanostruc-ture based periodical lattice. Superlattices Microstruct. 2018, 115, 168–176. [Google Scholar] [CrossRef]
- Singh, V.; Yadav, S.S.; Chauhan, V.; Shukla, S.; Vishnolia, K.K. Applications of Nanoparticles in Various Fields. In Diagnostic Applications of Health Intelligence and Surveillance Systems; Yadav, D., Bansal, A., Bhatia, M., Hooda, M., Morato, J., Eds.; Her IGI Global: Hershey, PA, USA, 2021; pp. 221–236. [Google Scholar]
- Manj, R.Z.A.; Chen, X.; Rehman, W.U.; Zhu, G.; Luo, W.; Yang, J. Big Potential from Silicon-Based Porous Nanomaterials: In Field of Energy Storage and Sensors. Front. Chem. 2018, 6, 539. [Google Scholar] [CrossRef]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Rosenecker, J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017, 24, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Hajj, K.A.; Whitehead, K.A. Tools for translation: Non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017, 2, 1–17. [Google Scholar] [CrossRef]
- Kowalski, P.S.; Rudra, A.; Miao, L.; Anderson, D.G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther. 2019, 27, 710–728. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X.; Dong, Y. Nanoscale platforms for messenger RNA delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1530. [Google Scholar] [CrossRef]
- Meng, C.; Chen, Z.; Li, G.; Welte, T.; Shen, H. Nanoplatforms for mRNA Therapeutics. Adv. Ther. 2020, 4, 2000099. [Google Scholar] [CrossRef]
- Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780. [Google Scholar] [CrossRef]
- Weng, Y.; Li, C.; Yang, T.; Hu, B.; Zhang, M.; Guo, S.; Xiao, H.; Liang, X.-J.; Huang, Y. The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 2020, 40, 107534. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Hou, X.; Vick, O.G.; Dong, Y. RNA delivery biomaterials for the treatment of genetic and rare diseases. Biomaterials 2019, 217, 119291. [Google Scholar] [CrossRef]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Awan, F.M.; Naz, A.; deAndrés-Galiana, E.J.; Alvarez, O.; Cernea, A.; Fernández-Brillet, L.; Fernández-Martínez, J.L.; Kloczkowski, A. Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review. Int. J. Mol. Sci. 2022, 23, 4645. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, B.; Zhang, Y.; Gordon, W.; Du, S.; Paradis, T.; Vincent, M.; von Schack, D. Bioinformatics for RNA-Seq Data Analysis. Available online: https://www.intechopen.com/chapters/50574 (accessed on 6 May 2023).
- Alzubaidi, A.; Kalita, J. Authentication of smartphone users using behavioral biometrics. IEEE Commun. Surv. Tutor. 2016, 16, 1998–2026. [Google Scholar] [CrossRef]
- Aldén, M.; Olofsson Falla, F.; Yang, D.; Barghouth, M.; Luan, C.; Rasmussen, M.; De Marinis, Y. Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr. Issues Mol. Biol. 2022, 44, 1115–1126. [Google Scholar] [CrossRef]
- Kitchin, R. Civil liberties or public health, or civil liberties and public health? Using surveillance technologies to tackle the spread of COVID-19. Space Polity 2020, 24, 362–381. [Google Scholar] [CrossRef]
- Polykretis, P. Role of the antigen presentation process in the immunization mechanism of the genetic vaccines against COVID-19 and the need for biodistribution evaluations. Scand. J. Immunol. 2022, 96, 13160. [Google Scholar] [CrossRef]
- Seneff, S.; Nigh, G.; Kyriakopoulos, A.M.; McCullough, P.A. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem. Toxicol. 2022, 164, 113008. [Google Scholar] [CrossRef]
- Allam, Z.; Bibri, S.E.; Chabaud, D.; Moreno, C. The Theoretical, Practical, and Technological Foundations of the 15-Minute City Model: Proximity and Its Environmental, Social and Economic Benefits for Sustainability. Energies 2022, 15, 6042. [Google Scholar] [CrossRef]
- Bibri, S.E.; Allam, Z. The Metaverse as a Virtual Form of Data-Driven Smart Urbanism: On Post-Pandemic Governance through the Prism of the Logic of Surveillance Capitalism. Smart Cities 2022, 5, 715–727. [Google Scholar] [CrossRef]
- Hildebrandt, M. Algorithmic regulation and the rule of law. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170355. [Google Scholar] [CrossRef]
- Lumineau, F.; Wang, W.; Schilke, O. Blockchain Governance—A New Way of Organizing Collaborations? Organ. Sci. 2021, 32, 500–521. [Google Scholar] [CrossRef]
- Yeung, K. Algorithmic regulation: A critical interrogation. Regul. Gov. 2017, 12, 505–523. [Google Scholar] [CrossRef]
- Barta, K.; Neff, G. Technologies for Sharing: Lessons from Quantified Self about the political economy of platforms. Inf. Commun. Soc. 2015, 19, 518–531. [Google Scholar] [CrossRef]
- Lee, M.K.; Jain, A.; Cha, H.J.; Ojha, S.; Kusbit, D. Procedural justice in algorithmic fairness: Leveraging transparency and out- come control for fair algorithmic mediation. Proc. ACM Hum. Comput. Interact. 2019, 3, 1–26. [Google Scholar] [CrossRef]
- Sharifi, A.; Allam, Z.; Bibri, S.E.; Khavarian-Garmsir, A.R. Interlinkages between smart cities and Sustainable Development Goals: A Systematic literature review of benefits and trade-offs. Cities 2023, in press. [Google Scholar]
- Moritz, C.T.; Ruther, P.; Goering, S.; Stett, A.; Ball, T.; Burgard, W.; Chudler, E.H.; Rao, R.P.N. New Perspectives on Neuroengineering and Neurotechnologies: NSF-DFG Workshop Report. IEEE Trans. Biomed. Eng. 2016, 63, 1354–1367. [Google Scholar] [CrossRef]
- Ploner, M.; Buyx, A.; Gempt, J.; Gjorgjieva, J.; Müller, R.; Priller, J.; Rückert, D.; Wolfrum, B.; Jacob, S.N. Reengineering neurotechnology: Placing patients first. Nat. Ment. Health 2023, 1, 5–7. [Google Scholar] [CrossRef]
- Koening, G. La Fin de L’individu; L’Observatoire: Paris, France, 2019. [Google Scholar]
- Sanguineti, G.; Califano, J.; Stafford, E.; Fox, J.; Koch, W.; Tufano, R.; Sormani, M.P.; Forastiere, A. Defining the risk of involvement for each neck nodal level in patients with early T-stage node-positive oropharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 1356–1364. [Google Scholar] [CrossRef]
- IEEE-Brain. Neurotechnologies: The Next Technology Frontier. 2022. Available online: https://brain.ieee.org/brain-topics/neurotechnologies-the-next-technology-frontier/ (accessed on 16 April 2022).
- Jeong, E.J.; Kim, D.J.; Lee, D.M. Game addiction from psychosocial health perspective. In Proceedings of the 17th International Conference on Electronic Commerce 2015 (ICEC ’15), New York, NY, USA, 3 August 2015; pp. 1–9. [Google Scholar]
- Belk, R. Extended self and the digital world. Curr. Opin. Psychol. 2016, 10, 50–54. [Google Scholar] [CrossRef]
- McCall, I.C.; Lau, C.; Minielly, N.; Illes, J. Owning Ethical Innovation: Claims about Commercial Wearable Brain Technologies. Neuron 2019, 102, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Wexler, A.; Thibault, R. Mind-Reading or Misleading? Assessing Direct- to-Consumer Electroencephalography (EEG) Devices Marketed for Wellness and Their Ethical and Regulatory Implications. J. Cogn. Enhanc. 2019, 3, 131–137. [Google Scholar] [CrossRef]
- Yuste, R.; Goering, S.; Arcas, B.A.; Bi, G.; Carmena, J.M.; Carter, A.; Fins, J.J.; Friesen, P.; Gallant, J.; Huggins, J.E.; et al. Four ethical priorities for neurotechnologies and AI. Nature 2017, 551, 159–163. [Google Scholar] [CrossRef]
- Minielly, N.; Hrincu, V.; Illes, J. Privacy Challenges to the Democratization of Brain Data. iScience 2020, 23, 101134. [Google Scholar] [CrossRef]
- Pfotenhauer, S.M.; Frahm, N.; Winickoff, D.; Benrimoh, D.; Illes, J.; Marchant, G. Mobilizing the private sector for responsible innovation in neurotechnology. Nat. Biotechnol. 2021, 39, 661–664. [Google Scholar] [CrossRef]
- Doya, K.; Ema, A.; Kitano, H.; Sakagami, M.; Russell, S. Social impact and governance of AI and neurotechnologies. Neural Netw. 2022, 152, 542–554. [Google Scholar] [CrossRef]
- Breckenridge, K. The Biometric State: The Promise and Peril of Digital Government in the New South Africa. J. S. Afr. Stud. 2005, 31, 267–282. [Google Scholar] [CrossRef]
- Blazeski, G. The Need for Government Oversight Over Do-It-Yourself Biohacking, the Wild West of Synthetic Biology. Available online: https://scholarship.shu.edu/student_scholarship/411 (accessed on 15 October 2019).
- Epstein, C. Guilty Bodies, Productive Bodies, Destructive Bodies: Crossing the Biometric Borders. Int. Political Sociol. 2007, 1, 149–164. [Google Scholar] [CrossRef]
- Mordini, E.; Ashton, H. The Transparent Body—Medical Information, Physical Privacy and Respect for Body Integrity. In Second Generation Biometrics: The Ethical and Social Context; Mordini, E., Tzovaras, D., Eds.; Springer: Berlin/Heidelberg, German, 2012. [Google Scholar]
- Agamben, G. No to bio-political tattooing. Commun. Crit. Cult. Stud. 2008, 5, 201–202. [Google Scholar] [CrossRef]
- Agamben, G. Homo Sacer: Sovereign Power and Bare Life; Stanford University Press: Stanford, CA, USA, 1998. [Google Scholar]
- Al-Rodhan, N. Behavioral Profiling and the Biometrics of Intent. Available online: https://web.archive.org/web/20170404045422/http://hir.harvard.edu/behavioral-profiling-politics-intent/ (accessed on 9 October 2022).
- Faulkner-Gurstein, R.; Wyatt, D. Platform NHS: Reconfiguring a Public Service in the Age of Digital Capitalism. Sci. Technol. Hum. Values 2021. [Google Scholar] [CrossRef]
- Mordini, E.; Tzovaras, D. Second Generation Biometrics: The Ethical and Social Context; Springer-Verlag: Berlin/Heidelberg, German, 2012. [Google Scholar]
- Pfleeger, C.P.; Pfleeger, S.L. Security in Computing, 4th ed.; Pearson Education: Boston, MA, USA, 2007; p. 220. ISBN 978-0-13-239077-4. [Google Scholar]
- Bibri, S.E. Ethical Implications of AmI and the IoT: Risks to Privacy, Security, and Trust, and Prospective Technological Safeguards. In The Shaping of Ambient Intelligence and the Internet of Things. Atlantis Ambient and Pervasive Intelligence; Atlantis Press: Paris, France, 2015; Volume 10, pp. 217–238. [Google Scholar] [CrossRef]
- Gisselsson, D. Next-Generation Biowarfare: Small in Scale, Sensational in Nature? Health Secur. 2022, 20, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Strachan, J.; Barnett, C.; Masters, A.F.; Maschmeyer, T. 4-Nitrophenol Reduction: Probing the Putative Mechanism of the Model Reaction. ACS Catal. 2020, 10, 5516–5521. [Google Scholar] [CrossRef]
- Schoenmaker, L.; Witzigmann, D.; Kulkarni, J.A.; Verbeke, R.; Kersten, G.; Jiskoot, W.; Crommelin, D.J. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and sta-bility. Int. J. Pharm. 2021, 601, 120586. [Google Scholar] [CrossRef]
- Zuboff, S. Big other: Surveillance Capitalism and the Prospects of an Information Civilization. J. Inf. Technol. 2015, 30, 75–89. [Google Scholar] [CrossRef]
- Browne, S. Dark Matters: On the Surveillance of Blackness; Duke University Press: Durham, NC, USA, 2015; p. 116. [Google Scholar]
- Atal, M.R. The Janus Faces of Silicon Valley. Rev. Int. Political Econ. 2020, 28, 336–350. [Google Scholar] [CrossRef]
- Crawford, K. Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Perspect. Sci. Christ. Faith J. Am. Sci. Affil. 2022, 74, 61–62. [Google Scholar] [CrossRef]
- de la Mano, M.; Padilla, J. BIG TECH BANKING. J. Compet. Law Econ. 2018, 14, 494–526. [Google Scholar] [CrossRef]
- Galloway, S. The Four: The Hidden DNA of Amazon, Apple, Facebook, and Google; Portfolio/Penguin: New York, NY, USA, 2017. [Google Scholar]
- Foster, L.E.; Lieberman, J.I.; Allen, G. Nanotechnology: Science, Innovation and Opportunity; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Bialecki, J. Gods, AIs, and Mormon Transhumanism. Platypus: Committee on the Anthropology of Science, Technology and Computing (CASTAC) Blog, 14 February 2019. Available online: http://blog.castac.org/2019/02/gods-ais-mormon-transhumanism/ (accessed on 20 April 2021).
- Bialecki, J. Machines for Making Gods: Mormonism, Transhumanism and Worlds without End; Fordham University Press: New York City, NY, USA, 2022. [Google Scholar]
- Bostrom, N. A history of transhumanist thought. J. Evol. Technol. 2005, 14, 1–25. [Google Scholar]
- Bostrom, N. Why I want to be a posthuman when I grow up. In Medical Enhancement and Posthumanity; Gordijn, B., Chadwick, R., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 107–136. [Google Scholar]
- Braidotti, R. The Posthuman; Polity: Cambridge, UK, 2013. [Google Scholar]
- Butler, P. Black Transhuman Liberation Theology: Technology and Spirituality; Bloomsbury Academic: New York, NY, USA, 2020. [Google Scholar]
- Jung, D. Transhumanism and Theological Anthropology: A Theological Examination of Transhumanism. Neue Z. Für Syst. Theol. Und Relig. 2022, 64, 172–194. [Google Scholar] [CrossRef]
- Farman, A. Mind out of place: Transhuman spirituality. J. Am. Acad. Relig. 2019, 87, 57–80. [Google Scholar] [CrossRef]
- Farman, A. Transhumanism, The Cambridge Encyclopaedia of Anthropology. 2022. Available online: https://www.anthroencyclopedia.com/entry/transhumanism (accessed on 29 February 2023).
- Hayles, K. Wrestling with Transhumanism. Metanexus: Transhumanism and Its Critics. Metanexus Institute. Available online: https://www.metanexus.net/h-wrestling-transhumanism/ (accessed on 24 January 2023).
- Levin, S.B. Creating a Higher Breed: Transhumanism and the Prophecy of Anglo-American Eugenics. In Repro-Ductive Ethics II: New Ideas and Innovations; Campo-Engelstein, L., Paul Burcher, P., Eds.; Springer: New York, NY, USA, 2018; pp. 37–58. [Google Scholar]
- Martinelli, E. An Aristotelian Resistance Against Transhumanism. J. Ethics Emerg. Technol. 2022, 32, 1–6. [Google Scholar] [CrossRef]
- Sorgner, S.L. On Transhumanism; Penn State University Press: University Park, PA, USA, 2021. [Google Scholar]
- Belk, R. Transhumanism in speculative fiction. J. Mark. Manag. 2022, 38, 423–442. [Google Scholar] [CrossRef]
- Ziewitz, M. Governing algorithms: Myth, Mess, and Methods. Sci. Technol. Hum. Values 2016, 41, 3–16. [Google Scholar] [CrossRef]
- Wiener, N. Cybernetics: Or Control and Communication in the Animal and the Machine; The MIT Press: Cambridge, MA, USA, 1948. [Google Scholar]
- Kurzweil, R. The Singularity Is Near: When Humans Transcend Biology; Viking: New York, NY, USA, 2005. [Google Scholar]
- Lanier, J. You Are Not A Gadget: A Manifesto; Vintage: NewYork, NY, USA, 2010. [Google Scholar]
- Eagleton, T. Sweet Violence: The Idea of the Tragic; Wiley: New York, NY, USA, 2009. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bibri, S.E. The Metaverse as a Virtual Model of Platform Urbanism: Its Converging AIoT, XReality, Neurotech, and Nanobiotech and Their Applications, Challenges, and Risks. Smart Cities 2023, 6, 1345-1384. https://doi.org/10.3390/smartcities6030065
Bibri SE. The Metaverse as a Virtual Model of Platform Urbanism: Its Converging AIoT, XReality, Neurotech, and Nanobiotech and Their Applications, Challenges, and Risks. Smart Cities. 2023; 6(3):1345-1384. https://doi.org/10.3390/smartcities6030065
Chicago/Turabian StyleBibri, Simon Elias. 2023. "The Metaverse as a Virtual Model of Platform Urbanism: Its Converging AIoT, XReality, Neurotech, and Nanobiotech and Their Applications, Challenges, and Risks" Smart Cities 6, no. 3: 1345-1384. https://doi.org/10.3390/smartcities6030065
APA StyleBibri, S. E. (2023). The Metaverse as a Virtual Model of Platform Urbanism: Its Converging AIoT, XReality, Neurotech, and Nanobiotech and Their Applications, Challenges, and Risks. Smart Cities, 6(3), 1345-1384. https://doi.org/10.3390/smartcities6030065