A Review on Key Innovation Challenges for Smart City Initiatives
Abstract
:1. Introduction
1.1. Understanding Smart Cities and Their Challenges
1.2. Objectives
- RQ1: What are the main challenges blocking current smart city initiatives from attaining the same scale of disruption as other areas of digital innovation? This first research question should provide an explicit identification of the core challenges to be faced by any city aiming to explore the opportunities of digital innovation.
- RQ2: What type of alternative innovation practices may help to unleash the real-world impact of digital innovation in smart city initiatives? This second question should provide insights on novel innovation paradigms for smart cities that might be more suitable for fully exploring the key properties of digital innovation.
2. Materials and Methods
3. Results
3.1. Challenge 1: Strategic Vision
3.1.1. The Ambiguity of Being a Smart City
3.1.2. Urban Innovation as a Situated Process, Not an Outcome
3.2. Challenge 2: Organizational Capabilities and Agility
3.2.1. Administrative Constraints
3.2.2. Human Resources
3.2.3. Finance
3.3. Challenge 3: Technology Domestication
3.3.1. Technological Determinism
3.3.2. The Corporate Smart City
3.3.3. Platformization
3.4. Challenge 4: Ecosystem Development
3.4.1. Collaborative Innovation
3.4.2. Governance Models
3.4.3. Business Models
3.4.4. Citizen Engagement
3.5. Challenge 5: Transboundary Innovation
3.5.1. Innovation Silos
3.5.2. Scalable Boundary-Spanning Collaborations
4. Discussion
4.1. The Importance of Digital Technology Platforms
4.2. The Emergence of Distributed Innovations
4.3. The Prevalence of Combinatorial Innovation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Camero, A.; Alba, E. Smart City and information technology: A review. Cities 2019, 93, 84–94. [Google Scholar] [CrossRef]
- UN [United Nations]. The 2030 Agenda for Sustainable Develpement; UN [United Nations]: San Francisco, CA, USA, 2015. [Google Scholar]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]
- Voytenko, Y.; Mccormick, K.; Evans, J.; Schliwa, G. Urban living labs for sustainability and low carbon cities in Europe: Towards a research agenda. J. Clean. Prod. 2016, 123, 45–54. [Google Scholar] [CrossRef]
- Cartalis, C. Toward resilient cities—A review of definitions, challenges and prospects. Adv. Build. Energy Res. 2014, 8, 259–266. [Google Scholar] [CrossRef]
- Noy, K.; Givoni, M. Is ’smart mobility’ sustainable? Examining the views and beliefs of transport’s technological entrepreneurs. Sustainability 2018, 10, 422. [Google Scholar] [CrossRef]
- Young, M.; Farber, S. Ride-hailing platforms are shaping the future of mobility, but for whom? In The Platform Economy and the City: Urban Peril and Promise in the New Digital Economy; Zwick, A., Spicer, Z., Eds.; McGill-Queens University Press: Montreal, QC, Canada, 2021. [Google Scholar]
- Verrest, H.; Pfeffer, K. Elaborating the urbanism in smart urbanism: Distilling relevant dimensions for a comprehensive analysis of Smart City approaches. Inf. Commun. Soc. 2019, 22, 1328–1342. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Marques, P.; Benneworth, P. Living labs: Challenging and changing the smart city power relations? Technol. Forecast. Soc. Change 2022, 183, 121866. [Google Scholar] [CrossRef]
- Parygin, D.; Sadovnikova, N.; Gamidullaeva, L.; Finogeev, A.; Rashevskiy, N. Tools and Technologies for Sustainable Territorial Development in the Context of a Quadruple Innovation Helix. Sustainability 2022, 14, 9086. [Google Scholar] [CrossRef]
- Meijer, A.; Bolívar, M.P.R. Governing the smart city: A review of the literature on smart urban governance. Int. Rev. Adm. Sci. 2016, 82, 392–408. [Google Scholar] [CrossRef]
- Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Rahul Sharma, K.; Kumar, E. Meta-principles for developing smart, sustainable, and healthy cities. Science 2016, 352, 940–943. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Weber-Lewerenz, B.; Traverso, M. Navigating Applied Artificial Intelligence (AI) in the Digital Era: How Smart Buildings and Smart Cities Become the Key to Sustainability. Journal of Artificial Intelligence and Applications. J. Artif. Intell. Appl. (AIA) 2023, 1, 230–243. [Google Scholar]
- Yigitcanlar, T.; Kamruzzaman, M.; Buys, L.; Ioppolo, G.; Sabatini-Marques, J.; da Costa, E.M.; Yun, J.H.J. Understanding ‘smart cities’: Intertwining development drivers with desired outcomes in a multidimensional framework. Cities 2018, 81, 145–160. [Google Scholar] [CrossRef]
- Mora, L.; Deakin, M.; Reid, A. Combining co-citation clustering and text-based analysis to reveal the main development paths of smart cities. Technol. Forecast. Soc. Change 2019, 142, 56–69. [Google Scholar] [CrossRef]
- Robinson, P.; Coutts, S. 16—The case of Quayside, Toronto, Canada. In Smart City Emergence; Elsevier: Amsterdam, The Netherlands, 2019; pp. 333–350. [Google Scholar] [CrossRef]
- Yoo, Y.; Boland, R.J.; Lyytinen, K.; Majchrzak, A. Organizing for innovation in the digitized world. Organ. Sci. 2012, 23, 1398–1408. [Google Scholar] [CrossRef]
- Sánchez-Corcuera, R.; Nuñez-Marcos, A.; Sesma-Solance, J.; Bilbao-Jayo, A.; Mulero, R.; Zulaika, U.; Azkune, G.; Almeida, A. Smart cities survey: Technologies, application domains and challenges for the cities of the future. Int. J. Distrib. Sens. Netw. 2019, 15. [Google Scholar] [CrossRef]
- Ismagilova, E.; Hughes, L.; Dwivedi, Y.K.; Raman, K.R. Smart cities: Advances in research—An information systems perspective. Int. J. Inf. Manag. 2019, 47, 88–100. [Google Scholar] [CrossRef]
- Trindade, E.P.; Hinnig, M.P.F.; da Costa, E.M.; Marques, J.S.; Bastos, R.C.; Yigitcanlar, T. Sustainable development of smart cities: A systematic review of the literature. J. Open Innov. Technol. Mark. Complex. 2017, 3, 1–14. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Bibri, S.E. On the sustainability of smart and smarter cities in the era of big data: An interdisciplinary and transdisciplinary literature review. J. Big Data 2019, 6, 25. [Google Scholar] [CrossRef]
- Ben Letaifa, S. How to strategize smart cities: Revealing the SMART model. J. Bus. Res. 2015, 68, 1414–1419. [Google Scholar] [CrossRef]
- Guedes, A.L.A.; Alvarenga, J.C.; Goulart, M.d.S.S.; y Rodriguez, M.V.R.; Soares, C.A.P. Smart cities: The main drivers for increasing the intelligence of cities. Sustainability 2018, 10, 3121. [Google Scholar] [CrossRef]
- Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; EBSE Technical Report EBSE-2007-01; School of Computer Science and Mathematics, Keele University: Keele, UK, 2007. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Pranckutė, R. Web of science (Wos) and scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Visser, M.; van Eck, N.J.; Waltman, L. Large-scale comparison of bibliographic data sources: Scopus, web of science, dimensions, crossref, and microsoft academic. Quant. Sci. Stud. 2021, 2, 20–41. [Google Scholar] [CrossRef]
- Appio, F.P.; Lima, M.; Paroutis, S. Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges. Technol. Forecast. Soc. Change 2019, 142, 1–14. [Google Scholar] [CrossRef]
- Coletta, C.; Heaphy, L.; Kitchin, R. From the accidental to articulated smart city: The creation and work of ‘Smart Dublin’. Eur. Urban Reg. Stud. 2019, 26, 349–364. [Google Scholar] [CrossRef]
- Taratori, R.; Rodriguez-Fiscal, P.; Pacho, M.A.; Koutra, S.; Pareja-Eastaway, M.; Thomas, D. Unveiling the evolution of innovation ecosystems: An analysis of triple, quadruple, and quintuple helix model innovation systems in european case studies. Sustainability 2021, 13, 7582. [Google Scholar] [CrossRef]
- Kummitha, R.K.R.; Crutzen, N. How do we understand smart cities? An evolutionary perspective. Cities 2017, 67, 43–52. [Google Scholar] [CrossRef]
- Camboim, G.F.; Zawislak, P.A.; Pufal, N.A. Driving elements to make cities smarter: Evidences from European projects. Technol. Forecast. Soc. Change 2019, 142, 154–167. [Google Scholar] [CrossRef]
- Sarv, L.; Kibus, K.; Soe, R.M. Smart city collaboration model: A case study of university-city collaboration. In Proceedings of the 13th International Conference on Theory and Practice of Electronic Governance (ICEGOV ’20), Athens, Greece, 2020, 23–25 September; Association for Computing Machinery: New York, NY, USA, 2020; pp. 674–677. [Google Scholar] [CrossRef]
- Mora, L.; Deakin, M.; Reid, A. Strategic principles for smart city development: A multiple case study analysis of European best practices. Technol. Forecast. Soc. Change 2018, 142, 70–97. [Google Scholar] [CrossRef]
- Ferraris, A.; Santoro, G.; Pellicelli, A.C. “Openness” of public governments in smart cities: Removing the barriers for innovation and entrepreneurship. Int. Entrep. Manag. J. 2020, 16, 1259–1280. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I.; Wolniak, R. Economic opportunities for creating smart cities in Poland. Does wealth matter? Cities 2021, 114, 103222. [Google Scholar] [CrossRef]
- Borghys, K.; van der Graaf, S.; Walravens, N.; Van Compernolle, M. Multi-Stakeholder Innovation in Smart City Discourse: Quadruple Helix Thinking in the Age of “Platforms”. Front. Sustain. Cities 2020, 2, 5. [Google Scholar] [CrossRef]
- Reeves, S. Envisioning ubiquitous computing. In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems—CHI ’12, Austin, TX, USA, 5–10 May 2012; p. 1573. [Google Scholar] [CrossRef]
- Grossi, G.; Pianezzi, D. Smart cities: Utopia or neoliberal ideology? Cities 2017, 69, 79–85. [Google Scholar] [CrossRef]
- Rogers, E. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003; p. 576. [Google Scholar]
- Acuto, M.; Steenmans, K.; Iwaszuk, E.; Ortega-Garza, L. Informing urban governance? Boundary-spanning organisations and the ecosystem of urban data. Area 2019, 51, 94–103. [Google Scholar] [CrossRef]
- Suzic, B.; Ulmer, A.; Schumacher, J. Complementarities and synergies of quadruple helix innovation design in smart city development. In Proceedings of the 2020 Smart Cities Symposium Prague, SCSP 2020, Prague, Czech Republic, 25 June 2020. [Google Scholar] [CrossRef]
- Oomens, I.M.; Sadowski, B.M. The importance of internal alignment in smart city initiatives: An ecosystem approach. Telecommun. Policy 2019, 43, 485–500. [Google Scholar] [CrossRef]
- Bodum, L.; Moreno, D. UNIVERSITIES AS SMART CITY DRIVERS in SMALL and MEDIUM-SIZED CITIES. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 11–18. [Google Scholar] [CrossRef]
- Komninos, N.; Kakderi, C.; Collado, A.; Papadaki, I.; Panori, A. Digital Transformation of City Ecosystems: Platforms Shaping Engagement and Externalities across Vertical Markets. J. Urban Technol. 2021, 28, 93–114. [Google Scholar] [CrossRef]
- Panori, A.; Kakderi, C.; Komninos, N.; Fellnhofer, K.; Reid, A.; Mora, L. Smart systems of innovation for smart places: Challenges in deploying digital platforms for co-creation and data-intelligence. Land Use Policy 2021, 111, 104631. [Google Scholar] [CrossRef]
- Gupta, R.; Mejia, C.; Kajikawa, Y. Business, innovation and digital ecosystems landscape survey and knowledge cross sharing. Technol. Forecast. Soc. Change 2019, 147, 100–109. [Google Scholar] [CrossRef]
- Doering, C.; Schmidtner, M.; Timinger, H. Collaboration for innovation between universities and smart cities. In Proceedings of the 2021 IEEE European Technology and Engineering Management Summit, E-TEMS 2021—Conference Proceedings, Virtual, 17–21 May 2021; pp. 82–86. [Google Scholar] [CrossRef]
- Clement, J.; Manjon, M.; Crutzen, N. Factors for collaboration amongst smart city stakeholders: A local government perspective. Gov. Inf. Q. 2022, 39, 101746. [Google Scholar] [CrossRef]
- Robaeyst, B.; Baccarne, B.; Duthoo, W.; Schuurman, D. The city as an experimental environment: The identification, selection, and activation of distributed knowledge in regional open innovation ecosystems. Sustainability 2021, 13, 6954. [Google Scholar] [CrossRef]
- Ardito, L.; Ferraris, A.; Messeni Petruzzelli, A.; Bresciani, S.; Del Giudice, M. The role of universities in the knowledge management of smart city projects. Technol. Forecast. Soc. Change 2019, 142, 312–321. [Google Scholar] [CrossRef]
- Steils, N.; Hanine, S.; Rochdane, H.; Hamdani, S. Urban crowdsourcing: Stakeholder selection and dynamic knowledge flows in high and low complexity projects. Ind. Mark. Manag. 2021, 94, 164–173. [Google Scholar] [CrossRef]
- Breytenbach, J.; Kariem, I. A Living Labs Approach to Manage Co-created Design Knowledge through Ideation Artefacts. In Proceedings of the 2020 6th IEEE International Conference on Information Management, ICIM 2020, London, UK, 27–29 March 2020; pp. 343–349. [Google Scholar] [CrossRef]
- Wang, P. Theorizing Digital Innovation Ecosystems: A Multilevel Ecological Framework. In Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm and Uppsala, Sweden, 8–14 June 2019. [Google Scholar]
- Antons, D.; Piller, F.T. Opening the black box of “not invented here”: Attitudes, decision biases, and behavioral consequences. Acad. Manag. Perspect. 2015, 29, 193–217. [Google Scholar] [CrossRef]
- Paskaleva, K.; Evans, J.; Watson, K. Co-producing smart cities: A Quadruple Helix approach to assessment. Eur. Urban Reg. Stud. 2021, 28, 395–412. [Google Scholar] [CrossRef]
- Sharifi, A. A critical review of selected smart city assessment tools and indicator sets. J. Clean. Prod. 2019, 233, 1269–1283. [Google Scholar] [CrossRef]
- Vallance, P.; Tewdwr-Jones, M.; Kempton, L. Building collaborative platforms for urban innovation: Newcastle City Futures as a quadruple helix intermediary. Eur. Urban Reg. Stud. 2020, 27, 325–341. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Campbell, D.F. ’Mode 3’ and ’Quadruple Helix’: Toward a 21st century fractal innovation ecosystem. Int. J. Technol. Manag. 2009, 46, 201–234. [Google Scholar] [CrossRef]
- Nambisan, S.; Lyytinen, K.; Yoo, Y. Digital innovation: Towards a transdisciplinary perspective. In Handbook of Digital Innovation; Edward Elgar Publishing: Cheltenham, UK, 2020; pp. 2–12. [Google Scholar] [CrossRef]
- Zittrain, J.L. The Generative Internet; The Harvard Law Review Association: Cambridge, MA, USA, 2006. [Google Scholar]
- José, R.; Rodrigues, H. Design Principles for Platform-Based Innovation in Smart Cities. In Proceedings of the Computational Science and Its Applications—ICCSA 2023, Athens, Greece, 3–6 July 2023. [Google Scholar] [CrossRef]
- Lyytinen, K.; Yoo, Y.; Boland, R.J. Digital product innovation within four classes of innovation networks. Inf. Syst. J. 2016, 26, 47–75. [Google Scholar] [CrossRef]
Query 1 “Innovation ecosystem”: TITLE-ABS-KEY (innovation AND ecosystem) AND LANGUAGE (english) AND (LIMIT-TO (PUBYEAR, 2023) OR LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019)) AND (LIMIT-TO (EXACTKEYWORD, “Smart City”)) |
Query 2 “helix”: (TITLE-ABS-KEY (helix) AND (TITLE-ABS-KEY (city) OR TITLE-ABS-KEY (urban))) AND LANGUAGE (english) AND (LIMIT-TO (PUBYEAR, 2023) OR LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019)) AND (LIMIT-TO (EXACTKEYWORD, “Smart City”)) |
Top-Level Categories for Challenges | Documents | Codes | Segments |
---|---|---|---|
1. Strategic vision | 19 | 12 | 64 |
2. Organizational Capabilities and Agility | 13 | 11 | 38 |
3. Technology Domestication | 14 | 5 | 45 |
4. Ecosystem Development | 31 | 60 | 424 |
5. Transboundary Innovation | 19 | 18 | 125 |
Total | 106 | 696 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
José, R.; Rodrigues, H. A Review on Key Innovation Challenges for Smart City Initiatives. Smart Cities 2024, 7, 141-162. https://doi.org/10.3390/smartcities7010006
José R, Rodrigues H. A Review on Key Innovation Challenges for Smart City Initiatives. Smart Cities. 2024; 7(1):141-162. https://doi.org/10.3390/smartcities7010006
Chicago/Turabian StyleJosé, Rui, and Helena Rodrigues. 2024. "A Review on Key Innovation Challenges for Smart City Initiatives" Smart Cities 7, no. 1: 141-162. https://doi.org/10.3390/smartcities7010006
APA StyleJosé, R., & Rodrigues, H. (2024). A Review on Key Innovation Challenges for Smart City Initiatives. Smart Cities, 7(1), 141-162. https://doi.org/10.3390/smartcities7010006