Measuring and Assessing the Level of Living Conditions and Quality of Life in Smart Sustainable Cities in Poland—Framework for Evaluation Based on MCDM Methods
Highlights
- A comprehensive, multidimensional assessment was conducted on 29 Polish smart sustainable cities, focusing on living conditions and quality of life. This assessment considered six dimensions and 35 indicators.
- This study verified the existence of a relationship between living conditions, quality of life, and the wealth and population of these cities.
- In Poland, there exists considerable spatial variation in the levels of living conditions and quality of life among smart sustainable cities, with higher ratings typically obtained in wealthier cities.
- The methodology developed for assessing the level of living conditions and quality of life in smart sustainable cities can serve as a valuable tool for national, regional, and local governments. It en-ables objective diagnosis and facilitates the development of modern and sustainable urban de-velopment strategies.
Abstract
:1. Introduction
- -
- To develop a new research methodology including the use of MCDM methods and decision-making criterion under uncertainty to determine the ranking and level of cities in terms of living conditions and life quality in smart sustainable cities;
- -
- To fill in the research gap in assessing the living conditions and life quality in smart sustainable cities in Poland, a country classified as an emerging market;
- -
- To apply a holistic approach to the assessment of the QoL in smart sustainable cities covering all its important dimensions from the point of view of inhabitants;
- -
- To determine a relationship between the determined standard of living (from the point of view of smart sustainable cities) in the surveyed cities and their wealth and number of inhabitants;
- -
- To make conclusions and recommendations for the formation of policies for the development of smart and sustainable cities in turbulent geopolitical and socioeconomic conditions.
2. Literature Studies
2.1. The Concept of Smart and Sustainable Urban Development
2.2. Study of Life Quality and Living Conditions in Smart Sustainable Cities
3. Materials and Methods
3.1. Study Area
3.2. Data
- –
- Their relevance to the objectives of national, regional and urban policies for smart and sustainable urban development;
- –
- The simplicity in their construction and description of the issues studied;
- –
- Their clarity and acceptability of normative interpretation;
- –
- Their reliance on reliable data sources;
- –
- The timeliness, comparability, and availability of data.
3.3. Framework of Evaluation Based on MCDM Methods
- (1)
- Determine criteria for assessing the conditions and QoL in the studied cities;
- (2)
- Select methods for evaluating the QoL in smart sustainable cities and methods for determining the weights of the evaluation criteria (indicators);
- (3)
- Carry out calculations and determine the weights of the criteria (indicators) for each evaluated dimension using the selected methods;
- (4)
- Apply the Laplace criterion to determine the weights of the evaluation criteria (indicators) used for the study;
- (5)
- Perform calculations and determine the evaluation indices of each dimension characterizing the QoL in smart sustainable cities for the MCDM methods used;
- (6)
- Perform the zero unitarization of the evaluation indices obtained for the methods used:
- (7)
- Apply the Laplace criterion to determine the final smart sustainable cities assessment index of conditions and QoL in each dimension of the studied cities;
- (8)
- Determine the level of smart sustainable cities’ living conditions and QoL in the assessed areas in the studied cities according to the algorithm:
- (9)
- Determine Smart Sustainable Cities Assessment Scores (SSCAS) index values for the surveyed cities:
- (10)
- Determine the level of living conditions and QoL in the assessed cities (Equations (3)–(6))
3.3.1. The Evaluation Based on Distance from Average Solution (EDAS)
- (1)
- Select alternatives and criteria and create the decision matrix:
- (2)
- Determine positive distance from the average (PDA) and negative distance from the mean average (NDA):
- (3)
- Calculate the weighted sum of PDA and the weighted sum of NDA for all alternatives:
- (4)
- Normalize SP and SN values for all alternatives:
- (5)
- Determine the Appraisal Score (ASi) for all alternatives:
- (6)
- Rank the alternatives (cities) based on the ASi value in the descending direction.
3.3.2. The Weighted Aggregates Sum Product Assessment (WASPAS) Method
- (1)
- Create a decision matrix:
- (2)
- Create a normalized decision matrix:
- (3)
- Calculate the total relative importance of the ith alternative (WSM approach):
- (4)
- Calculate the total relative importance of the ith alternative (WPM approach):
- (5)
- Determine the generalized evaluation criterion (Q) using the weighted total evaluation method:
3.3.3. The Criteria Importance through Intercriteria Correlation (CRITIC) Method
- (1)
- Create a decision matrix;
- (2)
- Create a normalized decision matrix:
- (3)
- Determine standard deviation (SD) for the criteria in the normalized decision matrix:
- (4)
- Determine correlations (rjk) between evaluation criteria in the normalized decision matrix:
- (5)
- Determine the weights of the evaluation criteria:
3.3.4. The Standard Deviation Method
- (1)
- Create a decision matrix (Equation (21));
- (2)
- Normalize the decision matrix (Equation (27), Equation (28));
- (3)
- Determine the standard deviation:
- (4)
- Determine indicator weights:
3.3.5. The Mean Weighting Method
4. Results
4.1. Assessing Living Conditions and Life Quality in Polish Cities in the Context of the Smart Sustainable Cities Concept
4.2. Evaluating the Relationship between Living Conditions and Life Quality in Poland’s Smart Sustainable Cities and Their Wealth and Population
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
EDAS | WASPAS | EDAS | WASPAS | Evaluation Index Determined Based on the Laplace Criterion | Final Rank | |||
---|---|---|---|---|---|---|---|---|
Assessment Score | Rank | Assessment Score | Rank | Unified Evaluation Value | Unified Evaluation Value | |||
Wrocław | 0.363 | 23 | 1.080 | 3 | 0.368 | 0.797 | 0.583 | 10 |
Bydgoszcz | 0.217 | 26 | 0.919 | 18 | 0.137 | 0.361 | 0.249 | 25 |
Toruń | 0.509 | 13 | 1.155 | 1 | 0.600 | 1.000 | 0.800 | 1 |
Lublin | 0.648 | 6 | 0.949 | 13 | 0.821 | 0.444 | 0.633 | 8 |
Gorzów Wielkopolski | 0.194 | 27 | 0.829 | 24 | 0.101 | 0.119 | 0.110 | 29 |
Zielona Góra | 0.610 | 7 | 0.791 | 28 | 0.761 | 0.016 | 0.388 | 20 |
Łódź | 0.558 | 9 | 0.804 | 26 | 0.678 | 0.051 | 0.365 | 21 |
Kraków | 0.760 | 1 | 0.998 | 9 | 1.000 | 0.575 | 0.787 | 2 |
Radom | 0.525 | 11 | 0.937 | 15 | 0.626 | 0.409 | 0.518 | 14 |
Warszawa | 0.657 | 5 | 1.026 | 6 | 0.836 | 0.650 | 0.743 | 4 |
Opole | 0.579 | 8 | 0.896 | 20 | 0.713 | 0.301 | 0.507 | 16 |
Rzeszów | 0.483 | 16 | 0.970 | 11 | 0.559 | 0.499 | 0.529 | 13 |
Białystok | 0.486 | 15 | 1.072 | 4 | 0.565 | 0.774 | 0.669 | 7 |
Gdańsk | 0.669 | 4 | 1.050 | 5 | 0.855 | 0.715 | 0.785 | 3 |
Gdynia | 0.710 | 3 | 0.807 | 25 | 0.921 | 0.060 | 0.490 | 17 |
Bielsko-Biała | 0.421 | 20 | 1.013 | 7 | 0.461 | 0.616 | 0.538 | 12 |
Bytom | 0.145 | 28 | 0.884 | 21 | 0.022 | 0.267 | 0.144 | 27 |
Częstochowa | 0.379 | 22 | 0.853 | 22 | 0.394 | 0.182 | 0.288 | 23 |
Gliwice | 0.526 | 10 | 0.935 | 16 | 0.628 | 0.405 | 0.516 | 15 |
Katowice | 0.131 | 29 | 0.991 | 10 | 0.000 | 0.557 | 0.279 | 24 |
Ruda Śląska | 0.263 | 25 | 0.797 | 27 | 0.211 | 0.031 | 0.121 | 28 |
Rybnik | 0.428 | 19 | 0.902 | 19 | 0.472 | 0.315 | 0.394 | 18 |
Sosnowiec | 0.340 | 24 | 0.785 | 29 | 0.332 | 0.000 | 0.166 | 26 |
Tychy | 0.755 | 2 | 0.942 | 14 | 0.991 | 0.422 | 0.707 | 5 |
Zabrze | 0.381 | 21 | 0.929 | 17 | 0.397 | 0.389 | 0.393 | 19 |
Kielce | 0.502 | 14 | 1.002 | 8 | 0.590 | 0.585 | 0.588 | 9 |
Olsztyn | 0.515 | 12 | 0.962 | 12 | 0.611 | 0.478 | 0.545 | 11 |
Poznań | 0.482 | 17 | 1.087 | 2 | 0.557 | 0.816 | 0.687 | 6 |
Szczecin | 0.43 | 18 | 0.849 | 23 | 0.472 | 0.172 | 0.322 | 22 |
EDAS | WASPAS | EDAS | WASPAS | Evaluation Index Determined Based on the Laplace Criterion | Final Rank | |||
---|---|---|---|---|---|---|---|---|
Assessment Score | Rank | Assessment Score | Rank | Unified Evaluation Value | Unified Evaluation Value | |||
Wrocław | 0.555 | 13 | 0.577 | 13 | 0.555 | 0.436 | 0.495 | 13 |
Bydgoszcz | 0.618 | 10 | 0.637 | 10 | 0.618 | 0.519 | 0.568 | 10 |
Toruń | 0.196 | 25 | 0.362 | 25 | 0.196 | 0.144 | 0.170 | 21 |
Lublin | 0.918 | 2 | 0.920 | 1 | 0.918 | 0.902 | 0.910 | 2 |
Gorzów Wielkopolski | 0.177 | 26 | 0.350 | 26 | 0.177 | 0.128 | 0.152 | 22 |
Zielona Góra | 0.263 | 5 | 0.398 | 11 | 0.263 | 0.194 | 0.228 | 20 |
Łódź | 0.623 | 11 | 0.640 | 9 | 0.623 | 0.522 | 0.572 | 9 |
Kraków | 0.609 | 16 | 0.626 | 14 | 0.609 | 0.503 | 0.556 | 12 |
Radom | 0.294 | 1 | 0.412 | 4 | 0.294 | 0.212 | 0.253 | 19 |
Warszawa | 0.632 | 17 | 0.647 | 17 | 0.632 | 0.531 | 0.582 | 8 |
Opole | 0.644 | 4 | 0.661 | 5 | 0.644 | 0.551 | 0.597 | 6 |
Rzeszów | 0.787 | 3 | 0.798 | 2 | 0.787 | 0.737 | 0.762 | 3 |
Białystok | 0.633 | 6 | 0.650 | 6 | 0.633 | 0.536 | 0.585 | 7 |
Gdańsk | 0.381 | 23 | 0.469 | 21 | 0.381 | 0.289 | 0.335 | 16 |
Gdynia | 0.128 | 24 | 0.313 | 23 | 0.128 | 0.078 | 0.103 | 27 |
Bielsko-Biała | 0.351 | 19 | 0.444 | 19 | 0.351 | 0.256 | 0.303 | 17 |
Bytom | 0.158 | 21 | 0.342 | 22 | 0.158 | 0.117 | 0.137 | 23 |
Częstochowa | 0.332 | 20 | 0.433 | 20 | 0.332 | 0.241 | 0.287 | 18 |
Gliwice | 0.143 | 18 | 0.333 | 18 | 0.143 | 0.105 | 0.124 | 24 |
Katowice | 1.000 | 7 | 0.992 | 3 | 1.000 | 1.000 | 1.000 | 1 |
Ruda Śląska | 0.011 | 28 | 0.259 | 28 | 0.011 | 0.004 | 0.007 | 28 |
Rybnik | 0.124 | 22 | 0.318 | 24 | 0.124 | 0.085 | 0.104 | 26 |
Sosnowiec | 0.127 | 29 | 0.324 | 29 | 0.127 | 0.093 | 0.110 | 25 |
Tychy | 0.000 | 27 | 0.256 | 27 | 0.000 | 0.000 | 0.000 | 29 |
Zabrze | 0.392 | 14 | 0.466 | 15 | 0.392 | 0.286 | 0.339 | 15 |
Kielce | 0.699 | 12 | 0.711 | 8 | 0.699 | 0.619 | 0.659 | 4 |
Olsztyn | 0.612 | 9 | 0.633 | 12 | 0.612 | 0.512 | 0.562 | 11 |
Poznań | 0.656 | 8 | 0.673 | 7 | 0.656 | 0.567 | 0.611 | 5 |
Szczecin | 0.466 | 15 | 0.519 | 16 | 0.466 | 0.358 | 0.412 | 14 |
EDAS | WASPAS | EDAS | WASPAS | Evaluation Index Determined Based on the Laplace Criterion | Final Rank | |||
---|---|---|---|---|---|---|---|---|
Assessment Score | Rank | Assessment Score | Rank | Unified Evaluation Value | Unified Evaluation Value | |||
Wrocław | 0.277 | 22 | 0.869 | 27 | 0.227 | 0.106 | 0.167 | 26 |
Bydgoszcz | 0.597 | 5 | 1.080 | 5 | 0.611 | 0.249 | 0.430 | 6 |
Toruń | 0.569 | 7 | 1.164 | 2 | 0.578 | 0.305 | 0.441 | 5 |
Lublin | 0.598 | 4 | 0.988 | 11 | 0.612 | 0.187 | 0.399 | 9 |
Gorzów Wielkopolski | 0.699 | 2 | 1.116 | 1 | 0.734 | 0.273 | 0.503 | 3 |
Zielona Góra | 0.148 | 26 | 2.193 | 14 | 0.073 | 1.000 | 0.536 | 1 |
Łódź | 0.456 | 15 | 0.904 | 21 | 0.443 | 0.130 | 0.286 | 14 |
Kraków | 0.152 | 25 | 0.819 | 29 | 0.078 | 0.072 | 0.075 | 27 |
Radom | 0.562 | 8 | 1.112 | 6 | 0.569 | 0.270 | 0.420 | 7 |
Warszawa | 0.373 | 18 | 0.848 | 26 | 0.343 | 0.092 | 0.217 | 21 |
Opole | 0.114 | 28 | 1.248 | 25 | 0.032 | 0.362 | 0.197 | 23 |
Rzeszów | 0.921 | 1 | 0.795 | 15 | 1.000 | 0.056 | 0.528 | 2 |
Białystok | 0.650 | 3 | 1.066 | 3 | 0.674 | 0.239 | 0.457 | 4 |
Gdańsk | 0.476 | 12 | 1.146 | 9 | 0.466 | 0.293 | 0.380 | 10 |
Gdynia | 0.403 | 16 | 1.366 | 7 | 0.378 | 0.441 | 0.410 | 8 |
Bielsko-Biała | 0.147 | 27 | 1.267 | 23 | 0.072 | 0.375 | 0.223 | 20 |
Bytom | 0.552 | 9 | 0.961 | 12 | 0.557 | 0.168 | 0.362 | 11 |
Częstochowa | 0.313 | 21 | 1.123 | 19 | 0.271 | 0.278 | 0.275 | 16 |
Gliwice | 0.249 | 23 | 1.100 | 20 | 0.194 | 0.262 | 0.228 | 19 |
Katowice | 0.159 | 24 | 0.712 | 28 | 0.086 | 0.000 | 0.043 | 29 |
Ruda Śląska | 0.465 | 13 | 0.816 | 13 | 0.453 | 0.070 | 0.262 | 17 |
Rybnik | 0.087 | 29 | 0.873 | 17 | 0.000 | 0.109 | 0.054 | 28 |
Sosnowiec | 0.461 | 14 | 0.770 | 16 | 0.448 | 0.039 | 0.244 | 18 |
Tychy | 0.370 | 19 | 0.737 | 22 | 0.339 | 0.017 | 0.178 | 24 |
Zabrze | 0.548 | 10 | 0.853 | 8 | 0.552 | 0.095 | 0.323 | 13 |
Kielce | 0.399 | 17 | 0.800 | 18 | 0.374 | 0.059 | 0.216 | 22 |
Olsztyn | 0.595 | 6 | 0.871 | 4 | 0.609 | 0.107 | 0.358 | 12 |
Poznań | 0.356 | 20 | 0.743 | 24 | 0.322 | 0.021 | 0.172 | 25 |
Szczecin | 0.531 | 11 | 0.745 | 10 | 0.532 | 0.022 | 0.277 | 15 |
EDAS | WASPAS | EDAS | WASPAS | Evaluation Index Determined Based on the Laplace Criterion | Final Rank | |||
---|---|---|---|---|---|---|---|---|
Assessment Score | Rank | Assessment Score | Rank | Unified Evaluation Value | Unified Evaluation Value | |||
Wrocław | 0.991 | 1 | 0.665 | 1 | 1.000 | 1.000 | 1.000 | 1 |
Bydgoszcz | 0.289 | 17 | 0.175 | 22 | 0.292 | 0.099 | 0.195 | 20 |
Toruń | 0.364 | 13 | 0.320 | 9 | 0.367 | 0.365 | 0.366 | 12 |
Lublin | 0.456 | 8 | 0.340 | 7 | 0.460 | 0.402 | 0.431 | 7 |
Gorzów Wielkopolski | 0.235 | 21 | 0.246 | 15 | 0.237 | 0.229 | 0.233 | 18 |
Zielona Góra | 0.189 | 23 | 0.184 | 20 | 0.191 | 0.115 | 0.153 | 22 |
Łódź | 0.292 | 16 | 0.186 | 19 | 0.294 | 0.118 | 0.206 | 19 |
Kraków | 0.539 | 4 | 0.378 | 5 | 0.544 | 0.471 | 0.507 | 4 |
Radom | 0.261 | 18 | 0.261 | 14 | 0.264 | 0.257 | 0.261 | 16 |
Warszawa | 0.812 | 2 | 0.572 | 2 | 0.819 | 0.829 | 0.824 | 2 |
Opole | 0.309 | 15 | 0.294 | 12 | 0.312 | 0.318 | 0.315 | 13 |
Rzeszów | 0.339 | 14 | 0.232 | 17 | 0.342 | 0.204 | 0.273 | 15 |
Białystok | 0.400 | 11 | 0.325 | 8 | 0.404 | 0.375 | 0.390 | 10 |
Gdańsk | 0.519 | 5 | 0.362 | 6 | 0.524 | 0.443 | 0.483 | 6 |
Gdynia | 0.624 | 3 | 0.428 | 3 | 0.630 | 0.563 | 0.597 | 3 |
Bielsko-Biała | 0.035 | 25 | 0.127 | 28 | 0.035 | 0.009 | 0.022 | 26 |
Bytom | 0.029 | 27 | 0.127 | 27 | 0.029 | 0.009 | 0.019 | 27 |
Częstochowa | 0.256 | 19 | 0.237 | 16 | 0.258 | 0.213 | 0.235 | 17 |
Gliwice | 0.052 | 24 | 0.138 | 24 | 0.053 | 0.031 | 0.042 | 24 |
Katowice | 0.385 | 12 | 0.310 | 11 | 0.388 | 0.347 | 0.367 | 11 |
Ruda Śląska | 0.033 | 26 | 0.130 | 25 | 0.033 | 0.016 | 0.024 | 25 |
Rybnik | 0.026 | 28 | 0.127 | 26 | 0.027 | 0.010 | 0.018 | 28 |
Sosnowiec | 0.197 | 22 | 0.154 | 23 | 0.199 | 0.060 | 0.130 | 23 |
Tychy | 0.255 | 20 | 0.183 | 21 | 0.257 | 0.114 | 0.186 | 21 |
Zabrze | 0.000 | 29 | 0.121 | 29 | 0.000 | 0.000 | 0.000 | 29 |
Kielce | 0.481 | 7 | 0.293 | 13 | 0.485 | 0.316 | 0.401 | 8 |
Olsztyn | 0.441 | 9 | 0.197 | 18 | 0.445 | 0.139 | 0.292 | 14 |
Poznań | 0.519 | 6 | 0.379 | 4 | 0.523 | 0.474 | 0.499 | 5 |
Szczecin | 0.433 | 10 | 0.311 | 10 | 0.437 | 0.349 | 0.393 | 9 |
EDAS | WASPAS | EDAS | WASPAS | Evaluation Index Determined Based on the Laplace Criterion | Final Rank | |||
---|---|---|---|---|---|---|---|---|
Assessment Score | Rank | Assessment Score | Rank | Unified Evaluation Value | Unified Evaluation Value | |||
Wrocław | 0.502 | 7 | 0.464 | 6 | 0.552 | 0.660 | 0.606 | 6 |
Bydgoszcz | 0.901 | 1 | 0.564 | 1 | 1.000 | 1.000 | 1.000 | 1 |
Toruń | 0.474 | 8 | 0.405 | 14 | 0.521 | 0.460 | 0.490 | 11 |
Lublin | 0.356 | 20 | 0.358 | 23 | 0.389 | 0.302 | 0.345 | 21 |
Gorzów Wielkopolski | 0.441 | 10 | 0.423 | 10 | 0.484 | 0.521 | 0.503 | 10 |
Zielona Góra | 0.511 | 5 | 0.421 | 11 | 0.563 | 0.516 | 0.540 | 8 |
Łódź | 0.459 | 9 | 0.391 | 18 | 0.505 | 0.412 | 0.458 | 16 |
Kraków | 0.312 | 25 | 0.359 | 21 | 0.340 | 0.307 | 0.323 | 24 |
Radom | 0.010 | 29 | 0.269 | 29 | 0.000 | 0.000 | 0.000 | 29 |
Warszawa | 0.703 | 2 | 0.536 | 2 | 0.778 | 0.904 | 0.841 | 2 |
Opole | 0.397 | 16 | 0.415 | 13 | 0.435 | 0.495 | 0.465 | 14 |
Rzeszów | 0.424 | 13 | 0.393 | 17 | 0.465 | 0.420 | 0.442 | 18 |
Białystok | 0.224 | 28 | 0.322 | 27 | 0.241 | 0.180 | 0.210 | 28 |
Gdańsk | 0.513 | 4 | 0.478 | 3 | 0.564 | 0.707 | 0.636 | 4 |
Gdynia | 0.394 | 18 | 0.430 | 9 | 0.431 | 0.544 | 0.487 | 12 |
Bielsko-Biała | 0.428 | 12 | 0.436 | 8 | 0.470 | 0.566 | 0.518 | 9 |
Bytom | 0.228 | 27 | 0.343 | 25 | 0.245 | 0.250 | 0.248 | 26 |
Częstochowa | 0.368 | 19 | 0.373 | 20 | 0.402 | 0.352 | 0.377 | 20 |
Gliwice | 0.327 | 24 | 0.359 | 22 | 0.357 | 0.305 | 0.331 | 23 |
Katowice | 0.409 | 15 | 0.456 | 7 | 0.448 | 0.632 | 0.540 | 7 |
Ruda Śląska | 0.355 | 21 | 0.340 | 26 | 0.388 | 0.242 | 0.315 | 25 |
Rybnik | 0.430 | 11 | 0.404 | 15 | 0.472 | 0.456 | 0.464 | 15 |
Sosnowiec | 0.345 | 22 | 0.383 | 19 | 0.376 | 0.387 | 0.382 | 19 |
Tychy | 0.410 | 14 | 0.421 | 12 | 0.449 | 0.516 | 0.483 | 13 |
Zabrze | 0.339 | 23 | 0.357 | 24 | 0.369 | 0.298 | 0.334 | 22 |
Kielce | 0.241 | 26 | 0.317 | 28 | 0.260 | 0.162 | 0.211 | 27 |
Olsztyn | 0.397 | 17 | 0.403 | 16 | 0.435 | 0.454 | 0.444 | 17 |
Poznań | 0.511 | 6 | 0.466 | 5 | 0.562 | 0.666 | 0.614 | 5 |
Szczecin | 0.585 | 3 | 0.476 | 4 | 0.646 | 0.702 | 0.674 | 3 |
References
- The World Bank. Urban Development. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 26 June 2023).
- World Urbanization Prospects. The 2014 Revision. New York: Department of Economic and Social Affairs. Available online: http://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf (accessed on 26 June 2023).
- Gołata, E.; Kuropka, I. Large cities in Poland in face of demographic changes. In Bulletin of Geography; Socio-Economic Series, No. 34; Szymańska, D., Biegańska, J., Eds.; Nicolaus Copernicus University: Toruń, Poland, 2016; pp. 17–31. [Google Scholar] [CrossRef]
- David, D. Environment and urbanization. Int. Encycl. Geogr. 2017, 24, 31–46. [Google Scholar]
- Han, J.; Meng, X.; Zhou, X.; Yi, B.; Liu, M.; Xiang, W.-N. A long-term analysis of urbanization process, landscape change, and carbon sources and sinks: A case study in China’s Yangtze River Delta region. J. Clean. Prod. 2016, 141, 1040–1050. [Google Scholar] [CrossRef]
- Degbelo, A.; Granell, C.; Trilles Oliver, S.; Bhattacharya, D.; Casteleyn, S.; Kray, C. Opening up smart cities: Citizen-centric challenges and opportunities from GIScience ISPRS. Int. J. Geo-Inf. 2016, 5, 16. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, X.; Liu, X.; Yang, X.; Wang, Z. The Influence of Urbanization to the Outer Boundary Ecological Environment Using Remote Sensing and GIS Techniques—A Case of the Greater Bay Area. Land 2022, 11, 1426. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, T.; Sun, J.; Fu, Z.; Yu, Y. Sustainable Development of Urbanization: From the Perspective of Social Security and Social Attitude for Migration. Sustainability 2022, 14, 10777. [Google Scholar] [CrossRef]
- Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives: Some stylised facts. Cities 2014, 38, 25–36. [Google Scholar] [CrossRef]
- Hara, M.; Nagao, T.; Hannoe, S.; Nakamura, J. New Key Performance Indicators for a Smart Sustainable City. Sustainability 2016, 8, 206. [Google Scholar] [CrossRef]
- Ozkaya, G.; Erdin, C. Evaluation of smart and sustainable cities through a hybrid MCDM approach based on ANP and TOPSIS technique. Heliyon 2020, 6, e05052. [Google Scholar] [CrossRef] [PubMed]
- UNECE. Key Performance Indicators for Smart Sustainable Cities to Assess the Achievement of Sustainable Development Goals; UNECE: Geneva, Switzerland, 2015; p. 1603. [Google Scholar]
- United Nations. The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 26 June 2023).
- European Commission. Smart Cities. Cities Using Technological Solutions to Improve the Management and Efficiency of the Urban Environment. Available online: https://commission.europa.eu/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en (accessed on 26 June 2023).
- Batagan, L. Smart cities and sustainability models. Inform. Econ. 2011, 15, 80–87. [Google Scholar]
- Al-Nasrawi, S.; Adams, C.; El-Zaart, A. A conceptual multidimensional model for assessing smart sustainable cities. J. Inf. Syst. Technol. Manag. 2015, 12, 541–558. [Google Scholar]
- Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the differences between sustainable and smart cities? Cities 2017, 60, 234–245. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. On the social shaping dimensions of smart sustainable cities: A study in science, technology, and society. Sustain. Cities Soc. 2017, 29, 219–246. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Höjer, M.; Wangel, S. Smart Sustainable Cities: Definition and Challenges. In ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing; Hilty, L., Aebischer, B., Eds.; Springer: Cham, Switzerland, 2015; p. 310. [Google Scholar] [CrossRef]
- Kramers, A.; Höjer, M.; Lövehagen, N.; Wangel, J. Smart sustainable cities: Exploring ICT solutions for reduced energy use in cities. Environ. Model. Softw. 2014, 56, 52–62. [Google Scholar] [CrossRef]
- Kramers, A.; Wangel, J.; Höjer, M. Governing the smart sustainable city: The case of the Stockholm Royal Seaport. In Proceedings of ICT for Sustainability; Atlantis Press: Amsterdam, The Netherlands, 2016; pp. 99–108. [Google Scholar]
- Rivera, M.B.; Eriksson, E.; Wangel, J. ICT practices in smart sustainable cities–in the intersection of technological solutions and practices of everyday life. In Proceedings of the 29th International Conference on Informatics for Environmental Protection (EnviroInfo 2015), Third International Conference on ICT for Sustainability, Copenhagen, Denmark, 7–9 September 2015; pp. 317–324. [Google Scholar]
- Akande, A.; Cabral, P.; Gomes, P.; Casteleyn, S. The Lisbon Ranking for Smart Sustainable Cities in Europe. Sustain. Cities Soc. 2019, 44, 475–487. [Google Scholar] [CrossRef]
- Liu, J.; Chen, N.; Chen, Z.; Xu, L.; Du, W.; Zhang, Y.; Wang, C. Towards sustainable smart cities: Maturity assessment and development pattern recognition in China. J. of Clean. Prod. 2022, 370, 133248. [Google Scholar] [CrossRef]
- Shao, Q.; Jiang, C.; Liou, J. Establishing a sustainable development assessment framework for a smart city using a hybrid Z-fuzzy-based decision-making approach. Clean Tech. Environ. Policy 2023, 25, 3027–3044. [Google Scholar] [CrossRef]
- Liu, Y.; Du, W.; Chen, N.; Wang, X. Construction and Evaluation of the Integrated Perception Ecological Environment Indicator (IPEEI) Based on the DPSIR Framework for Smart Sustainable Cities. Sustainability 2020, 12, 7112. [Google Scholar] [CrossRef]
- Gutman, S.; Rytova, E. Indicators for Assessing the Development of Smart Sustainable Cities. In Innovations in Digital Economy. SPBPU IDE 2019. Communications in Computer and Information Science; Rodionov, D., Kudryavtseva, T., Berawi, M.A., Skhvediani, A., Eds.; Springer: Cham, Switzerland, 2020; Volume 1273. [Google Scholar]
- Grant, K.A.; Chuang, S. An aggregating approach to ranking cities for knowledge-based development. Int. J. Knowl.-Based Dev. 2012, 3, 17–34. [Google Scholar] [CrossRef]
- Castelnovo, W.; Misuraca, G.; Savoldelli, A. A Smart Cities Governance: The Need for a Holistic Approach to Assessing Urban Participatory Policy Making. Soc. Sci. Comput. Rev. 2016, 34, 724–739. [Google Scholar] [CrossRef]
- Townsend, A.M. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia; W.W. Norton & Company, Inc.: New York, NY, USA, 2013. [Google Scholar]
- Hiremath, R.B.; Balachandra, P.; Kumar, B.; Bansode, S.; Murali, J. Indicatorbased urban sustainability—A review. Energy Sustain. Dev. 2013, 17, 555–563. [Google Scholar] [CrossRef]
- Sodiq, A.; Baloch, A.A.B.; Khan, S.A.; Sezer, N.; Mahmoud, S.; Jama, M.; Abdelaal, A. Towards modern sustainable cities: Review of sustainability principles and trends. J. Clean. Prod. 2019, 227, 972–1001. [Google Scholar] [CrossRef]
- Javidroozi, V.; Carter, C.; Grace, M.; Shah, H. Smart, Sustainable, Green Cities: A State-of-the-Art Review. Sustainability 2023, 15, 5353. [Google Scholar] [CrossRef]
- Monfaredzadeh, T.; Berardi, U. Beneath the smart city: Dichotomy between sustainability and competitiveness. Int. J. Sustain. Build. Technol. Urban Dev. 2015, 6, 140–156. [Google Scholar] [CrossRef]
- Gibson, D.V.; Kozmetsky, G.; Smilor, R.W. The Technopolis Phenomenon: Smart Cities, Fast Systems, Global Networks; Rowman and Littlefield: Lanham, MD, USA, 1992. [Google Scholar]
- Gabrys, J. Programming environments—Environmentality and citizen sensing in the smart city. Environ. Plann. D Soc. Space 2014, 32, 30–48. [Google Scholar] [CrossRef]
- Jucevicius, R.; Patašienė, I.; Patašius, M. Digital dimension of smart city: Critical analysis. Procedia Soc. Behav. Sci. 2014, 156, 146–150. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission. Smart Cities and Communities—European Innovation Partnership. Brussels (2012). Available online: http://ec.europa.eu/energy/technology/initiatives/doc/2012_4701_smart_cities_en.pdf (accessed on 27 June 2023).
- Kim, H.M.; Sabri, S.; Kent, A. Chapter 2—Smart cities as a platform for technological and social innovation in productivity, sustainability, and livability: A conceptual framework. In Smart Cities for Technological and Social Innovation Case Studies, Current Trends, and Future Steps; Academic Press: Cambridge, MA, USA, 2021; pp. 9–28. [Google Scholar] [CrossRef]
- Ruijer, E.; Van Twist, A.; Haaker, T.; Tartarin, T.; Schuurman, N.; Melenhorst, M.; Meijer, A. Smart Governance Toolbox: A Systematic Literature Review. Smart Cities 2023, 6, 878–896. [Google Scholar] [CrossRef]
- Chan, S.; Smith, M.K. Residents’ Quality of Life in Smart Cities: A Systematic Literature Review. Land 2023, 12, 876. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. ICT of the new wave of computing for sustainable urban forms: Their big data and context–aware augmented typologies and design concepts. Sustain. Cities Soc. 2017, 32, 449–474. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. The core enabling technologies of big data analytics and context–aware computing for smart sustainable cities: A Review and synthesis. J. Big Data 2017, 4, 38. [Google Scholar] [CrossRef]
- Toli, A.M.; Murtagh, N. The Concept of Sustainability in Smart City Definitions. Front. Built Environ. 2020, 6, 77. [Google Scholar] [CrossRef]
- Pira, M. A novel taxonomy of smart sustainable city indicators. Humanit. Soc. Sci. Commun. 2021, 8, 197. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Generating a vision for smart sustainable cities of the future: A scholarly backcasting approach. Eur. J. Futures Res. 2019, 7, 5. [Google Scholar] [CrossRef]
- ITU-T FG-SSC. Technical Report on Smart Sustainable Cities: An analysis of Definitions; International Telecommunication Union (ITU-T), Focus Group on Smart Sustainable Cities (FG-SSC): Geneva, Switzerland, 2014. [Google Scholar]
- United Nations; ITU-T FG-SSC. Shaping Smarter and More Sustainable Cities: Striving for Sustainable Development Goals, International Telecommunication Union (ITU-T), Focus Group on Smart Sustainable Cities (FG-SSC): Geneva, Switzerland; United Nations: Geneva, Switzerland, 2016.
- Bibri, S.E. A foundational framework for smart sustainable city development: Theoretical, disciplinary, and discursive dimensions and their synergies. Sustain. Cities Soc. 2018, 38, 758–794. [Google Scholar] [CrossRef]
- Mitchell, W.J. e-topia. Urban Life, Jim—But Not as We Know it; The MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- GeSI. Enabling the Low Carbon Economy in the Information Age; GeSI: London, UK, 2008. [Google Scholar]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Saleem, M.; Abbas, S.; Ghazal, T.M.; Khan, M.A.; Sahawneh, N.; Ahma, M. Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques. Egypt. Inform. J. 2022, 23, 417–426. [Google Scholar] [CrossRef]
- Guo, Y.; Tang, Z.; Guo, J. Could a Smart City Ameliorate Urban Traffic Congestion? A Quasi-Natural Experiment Based on a Smart City Pilot Program in China. Sustainability 2020, 12, 2291. [Google Scholar] [CrossRef]
- Musa, A.A.; Malami, S.I.; Alanazi, F.; Ounaies, W.; Alshammari, M.; Haruna, S.I. Sustainable Traffic Management for Smart Cities Using Internet-of-Things-Oriented Intelligent Transportation Systems (ITS): Challenges and Recommendations. Sustainability 2023, 15, 9859. [Google Scholar] [CrossRef]
- Almihat, M.G.M.; Kahn, M.T.E.; Aboalez, K.; Almaktoof, A.M. Energy and Sustainable Development in Smart Cities: An Overview. Smart Cities 2022, 5, 1389–1408. [Google Scholar] [CrossRef]
- Russo, F.; Rindone, C. Smart City for Sustainable Development: Applied Processes from SUMP to MaaS at European Level. Appl. Sci. 2023, 13, 1773. [Google Scholar] [CrossRef]
- Ionescu, R.V.; Zlati, M.L.; Antohi, V.M. Smart cities from low cost to expensive solutions under an optimal analysis. Financ. Innov. 2023, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Huovila, A.; Bosch, P.; Airaksinen, M. Comparative analysis of standardized indicators for Smart sustainable cities: What indicators and standards to use and when? Cities 2019, 89, 141–153. [Google Scholar] [CrossRef]
- Giffinger, R.; Gudrun, H. Smart cities ranking: An effective instrument for the po-sitioning of the cities? ACE: Archit. City Environ. 2010, 4, 7–26. [Google Scholar] [CrossRef]
- Praharaj, S.; Han, J.H.; Hawken, S. Evolving a Locally Appropriate Indicator System for Benchmarking Sustainable Smart Cities in India. In Sustainable Development Research in the Asia-Pacific Region; World Sustainability Series; Leal Filho, W., Rogers, J., Iyer-Raniga, U., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Lazaroiu, G.C.; Roscia, M. Definition methodology for the smart cities model. Energy 2012, 47, 326–332. [Google Scholar] [CrossRef]
- Praharaj, S.; Han, H. Building a typology of the 100 smart cities in India. Smart Sustain. Built Environ. 2019, 8, 400–414. [Google Scholar] [CrossRef]
- Batten, J. Sustainable Cities Index 2016; Arcadis Global: Amsterdam, The Netherlands, 2016. [Google Scholar]
- UN-HABITAT. The City Prosperity Initiative: 2015 Global City Report; UN-HABITAT: Nairobi, Kenya, 2015. [Google Scholar]
- The Quality of Life Index by City. Available online: https://www.numbeo.com/quality-of-life/region_rankings.jsp?title=2022®ion=150 (accessed on 27 June 2023).
- The European Smart Cities. Available online: https://www.smart-cities.eu/ranking.html (accessed on 27 June 2023).
- European Green City Index. Available online: https://assets.new.siemens.com/siemens/assets/api/uuid:fddc99e7-5907-49aa-92c4-610c0801659e/european-green-city-index.pdf (accessed on 27 June 2023).
- Berrone, P.; Ricart, J.E.; Carraso, C.; Ricart, R. IESE Cities in Motion Index; IESE Business School: Barcelona, Spain, 2016; p. 60. [Google Scholar]
- PwC Cities of Opportunity (2016). Available online: https://www.pwc.com/gx/en/asset-management/real-estate-insights/assets/real-estate-cities-opportunities.pdf (accessed on 27 June 2023).
- The Global Liveability Index 2022. Available online: https://www.eiu.com/n/campaigns/global-liveability-index-2022/ (accessed on 27 June 2023).
- The Global Power City Index. Available online: https://mori-m-foundation.or.jp/english/ius2/gpci2/index.shtml (accessed on 27 June 2023).
- The Mercer Quality of Living. Available online: https://mobilityexchange.mercer.com/Insights/quality-of-living-rankings (accessed on 27 June 2023).
- Phillis, Y.A.; Kouikoglou, V.S.; Verdugo, C. Urban sustainability assessment and ranking of cities. Comput. Environ. Urban Syst. 2017, 64, 254–265. [Google Scholar] [CrossRef]
- Local Data Bank. Available online: https://bdl.stat.gov.pl/bdl/start (accessed on 27 June 2023).
- Wang, C.; Quan, Y.; Li, X.; Yan, Y.; Zhang, J.; Song, W.; Lu, J.; Wu, G. Characterizing and analyzing the sustainability and potential of China’s cities over the past three decades. Ecol. Indic. 2022, 136, 108635. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhang, H.; Zhang, Y. Evaluation on new first-tier smart cities in China based on entropy method and TOPSIS. Ecol. Indic. 2022, 145, 109616. [Google Scholar] [CrossRef]
- Sustainable Cities Health at the Heart of Urban Development. Available online: https://www.who.int/docs/default-source/documents/publications/sustainable-cities.pdf?sfvrsn=2accfb68_1 (accessed on 27 June 2023).
- Batool, B.; Abosuliman, S.S.; Abdullah, S.; Ashraf, S. EDAS method for decision support modeling under the Pythagorean probabilistic hesitant fuzzy aggregation information. J. Ambient. Intell. Hum. Comput. 2022, 13, 5491–5504. [Google Scholar] [CrossRef]
- Keshavarz, G.M.; Zavadskas, E.K.; Amiri, M.; Turskis, Z. Extended EDAS method for fuzzy multi-criteria decision-making: An application to supplier selection. Int. J. Comput. Commun. 2016, 11, 358–371. [Google Scholar]
- Brodny, J.; Tutak, M. Assessing the level of innovativeness and digitalization of enterprises in the European Union States. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100210. [Google Scholar] [CrossRef]
- Chakraborty, S.; Bhattacharyya, O.; Zavadskas, E.K.; Antucheviciene, J. Application of WASPAS method as an optimization tool in non-traditional machining process. Inf. Technol. Control 2015, 44, 77–88. [Google Scholar]
- Thakkar, J.J. Weighted Aggregated Sum Product Assessment (WASPAS). In Multi-Criteria Decision Making; Studies in Systems, Decision and Control; Springer: Singapore, 2021; Volume 336. [Google Scholar]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems: The critic method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Disparities of Central and Eastern European Countries of European Union in innovation potential: A multi-criteria assessment. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100282. [Google Scholar] [CrossRef]
- Krishnan, A.R.; Kasim, M.M.; Hamid, R.; Ghazali, M.F. A Modified CRITIC Method to Estimate the Objective Weights of Decision Criteria. Symmetry 2021, 13, 973. [Google Scholar] [CrossRef]
- Sałabun, W.; Watróbski, J.; Shekhovtsov, A. Are MCDA methods benchmarkable? A comparative study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II methods. Symmetry 2020, 12, 1549. [Google Scholar] [CrossRef]
- Paradowski, B.; Shekhovtsov, A.; Bączkiewicz, A.; Kizielewicz, S.; Sałabun, W. Similarity analysis of methods for objective determination of weights in multi-criteria decision support systems. Symmetry 2021, 13, 1874. [Google Scholar] [CrossRef]
- Human Development Index (HDI). Available online: https://hdr.undp.org/data-center/human-development-index#/indicies/HDI (accessed on 27 June 2023).
- Brodny, J.; Tutak, M. Assessing the Level of Innovation of Poland from the Perspective of Regions between 2010 and 2020. J. Open Innov. Technol. Mark. Complex. 2022, 8, 190. [Google Scholar] [CrossRef]
- Djuric, D. The impact of upbringing and the local community on the development of environmental awareness among college educated people in Bosnia and Herzegovina. Environ. Dev. Sustain. 2023, 25, 5393–5410. [Google Scholar] [CrossRef]
- Royuela, V.; Rosina, M.; Vayá, E. Influence of Quality of Life on Urban Growth: A Case Study of Barcelona, Spain. Reg. Stud. 2010, 44, 551–567. [Google Scholar] [CrossRef]
- Barreira, A.P.; Amado, C.; Santos, S.; Andraz, J.; Guimarães, M.H. Assessment and Determinants of the Quality of Life in Portuguese Cities. Int. Reg. Sci. Rev. 2021, 44, 647–683. [Google Scholar] [CrossRef]
- Albouy, D. Are Big Cities Bad Places to Live? Estimating Quality of Life Across Metropolitan Areas; NBER Working Paper; National Bureau of Economic Research: Cambridge, MA, USA, 2008; p. 14472. [Google Scholar]
- Wieziak-Białowolska, D. Quality of Life in Cities: Empirical Evidence in Comparative European Perspective. Cities 2016, 58, 87–96. [Google Scholar] [CrossRef]
- Serbanica, C.; Constantin, D.L. Sustainable cities in central and eastern European countries. Moving towards smart specialization. Habitat Int. 2017, 68, 55–63. [Google Scholar] [CrossRef]
- Zeng, W.; Xiang, L.; Zhang, W. Evaluation of Life Quality and its Spatial Mismatch with Local Economic Development in Large Chinese Cities. Appl. Res. Qual. Life 2020, 15, 239–258. [Google Scholar] [CrossRef]
- Snieska, V.; Zykiene, I. City attractiveness for investment: Characteristics and underlying factors. Procedia Soc. Behav. Sci. 2015, 213, 48–54. [Google Scholar] [CrossRef]
- Altindag, D.T. Crime and unemployment: Evidence from Europe. Int. Rev. Law Econ. 2012, 32, 145–157. [Google Scholar] [CrossRef]
- Janko, Z.; Popli, G. Examining the link between crime and unemployment: A time-series analysis for Canada. Appl. Econ. 2015, 47, 4007–4019. [Google Scholar] [CrossRef]
- Zheng, C.; Yuan, J.; Zhu, L.; Zhang, Y.; Shao, Q. From digital to sustainable: A scientometric review of smart city literature between 1990 and 2019. J. Clean. Prod. 2020, 258, 120689. [Google Scholar] [CrossRef]
- Lim, Y.; Edelenbos, J.; Gianoli, A. Identifying the results of smart city development: Findings from systematic literature review. Cities 2019, 95, 102397. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I. Health Care in Cities Perceived as Smart in the Context of Population Aging—A Record from Poland. Smart Cities 2022, 5, 1267–1292. [Google Scholar] [CrossRef]
- Ober, J.; Karwot, J.; Sitinjak, C. Modelling Possible Household Uses of Grey Water in Poland using Property Fitting Analysis. Resources 2024, 13, 25. [Google Scholar] [CrossRef]
- Maresova, P.; Prochazka, M.; Barakovic, S.; Baraković Husić, J.; Kuca, K. A Shortage in the Number of Nurses—A Case Study from a Selected Region in the Czech Republic and International Context. Healthcare 2020, 8, 152. [Google Scholar] [CrossRef]
- Hobson, K. From circular consumers to carriers of (unsustainable) practices: Socio-spatial transformations in the Circular City. Urban Geogr. 2020, 41, 907–910. [Google Scholar] [CrossRef]
- Laakso, S.; Matschoss, K.; Apajalahti, E.-L. What is clean and comfortable? Challenging norms and conventions in everyday life toward sustainability. Eur. J. Cult. Political Sociol. 2022, 9, 273–298. [Google Scholar] [CrossRef]
- Chekima, B.; Chekima, S.; Wafa, S.A.; Wafa, S.K.; Igau, O.A.; Sondoh, S.L. Sustainable consumption: The effects of knowledge, cultural values, environmental advertising, and demographics. Int. J. Sustain. Dev. World Ecol. 2016, 23, 210–220. [Google Scholar] [CrossRef]
- Ranking of the Most Polluted Big Cities in Europe in April 2021. Available online: https://airly.org/en/ranking-of-the-most-polluted-big-cities-in-europe-in-april-2021/ (accessed on 27 June 2023).
- AGH. Skutki Krakowskiej Uchwały Antysmogowej—Analiza i Prognozy Naukowców z AGH. Available online: https://www.agh.edu.pl/aktualnosci/info/skutki-krakowskiej-uchwaly-antysmogowej-analiza-i-prognozy-naukowcow-z-agh (accessed on 27 June 2023).
- Wolniak, R. European Union Smart Mobility–Aspects Connected with Bike Road System’s Extension and Dissemination. Smart Cities 2023, 6, 1009–1042. [Google Scholar] [CrossRef]
- Sanmiguel-Rodríguez, A.; Giraldez, A.V. Impact of climate on a bike-sharing system. Minutes of use depending on day of the week, month and season of the year. Cuad. Psicol. Deporte 2019, 19, 102–112. [Google Scholar] [CrossRef]
- De Neve, J.E.; Sachs, J.D. The SDGs and human well-being: A global analysis of synergies, trade-offs, and regional differences. Sci. Rep. 2020, 10, 15113. [Google Scholar] [CrossRef]
- Blasi, S.; Ganzaroli, A.; De Noni, I. Smartening sustainable development in cities: Strengthening the theoretical linkage between smart cities and SDGs. Sustain. Cities Soc. 2022, 80, 103793. [Google Scholar] [CrossRef]
- Yiyi, S.; Di, F. Smart cities and sustainable development. Reg. Stud. 2023, 57, 722–738. [Google Scholar]
City | Inhabitants | Surface, km2 | Population Density, Persons/km2 |
---|---|---|---|
Wrocław | 642,687 | 292.8 | 2194.8 |
Bydgoszcz | 339,053 | 176 | 1926.7 |
Toruń | 196,935 | 115.7 | 1701.8 |
Lublin | 336,339 | 147.5 | 2280.7 |
Gorzów Wielkopolski | 120,087 | 85.7 | 1400.9 |
Zielona Góra | 140,403 | 278.3 | 504.6 |
Łódź | 664,071 | 293.3 | 2264.5 |
Kraków | 782,137 | 326.9 | 2393 |
Radom | 206,946 | 111.8 | 1851 |
Warsaw | 1,795,569 | 517.2 | 3417.4 |
Opole | 127,077 | 148.9 | 853.6 |
Rzeszów | 198,609 | 129 | 1539.5 |
Białystok | 295,683 | 102.1 | 2895.2 |
Gdańsk | 470,621 | 262 | 1796.5 |
Gdynia | 243,918 | 135.1 | 1804.9 |
Bielsko-Biała | 168,319 | 124.5 | 1351.9 |
Bytom | 161,139 | 69.4 | 2320.6 |
Częstochowa | 214,342 | 159.7 | 1342.1 |
Gliwice | 175,102 | 133.9 | 1307.9 |
Katowice | 286,960 | 164.6 | 1743 |
Ruda Śląska | 135,008 | 77.7 | 1736.9 |
Rybnik | 135,994 | 148.4 | 916.6 |
Sosnowiec | 194,818 | 91.1 | 2139.4 |
Tychy | 125,781 | 81.8 | 1537.5 |
Zabrze | 168,319 | 80.4 | 2101.3 |
Kielce | 191,448 | 109.7 | 1746 |
Olsztyn | 169,319 | 88.3 | 1922.3 |
Poznań | 529,410 | 261.9 | 2021.3 |
Szczecin | 395,513 | 300.6 | 1315.7 |
Total | 9,611,607 | 5014.3 | - |
Dimension | Indicator | Designation | Direction of Impact |
---|---|---|---|
Economy, education, and innovation | Gross domestic product per capita, PLN | E1 | Stimulant |
Urban income per capita, PLN | E2 | Stimulant | |
Average gross monthly salaries, PLN | E3 | Stimulant | |
Percentage of population with higher education, % | E4 | Stimulant | |
Percentage of population with primary and incomplete primary education, % | E5 | Destimulant | |
Innovative enterprises, % | E6 | Stimulant | |
Life standard, safety, and culture | Average floor area of housing per person, m2 | L1 | Stimulant |
Number of apartments per 1000 city residents | L2 | Stimulant | |
Apartments equipped with central heating, % | L3 | Stimulant | |
Apartments equipped with bathroom and toilet, % | L4 | Stimulant | |
Number of crimes per 1000 residents | L5 | Destimulant | |
Traffic accidents per 10 thousand residents | L6 | Destimulant | |
Public libraries per 10 thousand residents | L7 | Stimulant | |
Number of residents per 1 cinema seat | L8 | Stimulant | |
Museums per 10 thousand residents | L9 | Stimulant | |
Health | General hospital beds per 1000 residents | H1 | Stimulant |
Doctors per 10 thousand residents | H2 | Stimulant | |
Nurses and midwives per 10,000 residents | H3 | Stimulant | |
Environment and energy | Index of average exposure to PM2.5 dust | EE1 | Destimulant |
Mass of municipal waste generated per capita, kg | EE2 | Destimulant | |
Municipal wastewater treated per capita, dam3 | EE3 | Destimulant | |
Water consumption from waterworks per capita, m3 | EE4 | Destimulant | |
Total energy consumption per capita, kWh | EE5 | Destimulant | |
Share of parks, greens and neighbourhood green areas in total area, % | EE6 | Stimulant | |
Infrastructure, transport, andaccessibility | Population with access to and use of the Internet, % | I1 | Stimulant |
Roads for bicycles per 100 km2 of the city, km | I2 | Stimulant | |
Length of bus lanes, km | I3 | Stimulant | |
Number of hybrid and electric passenger cars, % of all passenger cars | I4 | Stimulant | |
Number of parking lots in the Park & Ride system (Park & Ride) | I5 | Stimulant | |
Government | Funds from the state budget or other transferred as co-financing of programs and projects implemented with the participation of EU structural and cohesion funds, per capita PLN | G1 | Stimulant |
Unemployment rate, % | G2 | Destimulant | |
Poverty rate, % | G3 | Destimulant | |
Local development plans—draft plans in total | G5 | Stimulant | |
Detection rate of perpetrators of stated crimes, % | G6 | Stimulant |
EDAS | WASPAS | EDAS | WASPAS | Evaluation Index Determined Based on the Laplace Criterion | Final Rank | |||
---|---|---|---|---|---|---|---|---|
Assessment Score | Rank | Assessment Score | Rank | Unified Evaluation Value | Unified Evaluation Value | |||
Wrocław | 0.714 | 3 | 0.840 | 4 | 0.714 | 0.633 | 0.673 | 3 |
Bydgoszcz | 0.266 | 20 | 0.629 | 22 | 0.266 | 0.151 | 0.208 | 21 |
Toruń | 0.287 | 18 | 0.635 | 21 | 0.287 | 0.163 | 0.225 | 19 |
Lublin | 0.449 | 10 | 0.714 | 10 | 0.449 | 0.345 | 0.397 | 10 |
Gorzów Wielkopolski | 0.000 | 29 | 0.563 | 29 | 0.000 | 0.000 | 0.000 | 29 |
Zielona Góra | 0.225 | 21 | 0.627 | 24 | 0.225 | 0.145 | 0.185 | 23 |
Łódź | 0.389 | 15 | 0.670 | 17 | 0.389 | 0.245 | 0.317 | 15 |
Kraków | 0.734 | 2 | 0.852 | 2 | 0.734 | 0.660 | 0.697 | 2 |
Radom | 0.201 | 22 | 0.642 | 20 | 0.201 | 0.181 | 0.191 | 22 |
Warszawa | 1.000 | 1 | 1.000 | 1 | 1.000 | 1.000 | 1.000 | 1 |
Opole | 0.422 | 12 | 0.709 | 11 | 0.422 | 0.333 | 0.378 | 11 |
Rzeszów | 0.524 | 9 | 0.764 | 7 | 0.524 | 0.460 | 0.492 | 8 |
Białystok | 0.404 | 14 | 0.697 | 12 | 0.404 | 0.307 | 0.356 | 13 |
Gdańsk | 0.662 | 5 | 0.801 | 5 | 0.662 | 0.545 | 0.603 | 5 |
Gdynia | 0.609 | 6 | 0.771 | 6 | 0.609 | 0.475 | 0.542 | 6 |
Bielsko-Biała | 0.417 | 13 | 0.694 | 13 | 0.417 | 0.298 | 0.358 | 12 |
Bytom | 0.017 | 28 | 0.582 | 28 | 0.017 | 0.042 | 0.029 | 28 |
Częstochowa | 0.286 | 19 | 0.653 | 19 | 0.286 | 0.206 | 0.246 | 18 |
Gliwice | 0.524 | 8 | 0.724 | 9 | 0.524 | 0.367 | 0.446 | 9 |
Katowice | 0.591 | 7 | 0.748 | 8 | 0.591 | 0.424 | 0.507 | 7 |
Ruda Śląska | 0.035 | 26 | 0.594 | 26 | 0.035 | 0.071 | 0.053 | 26 |
Rybnik | 0.122 | 25 | 0.614 | 25 | 0.122 | 0.117 | 0.120 | 25 |
Sosnowiec | 0.181 | 24 | 0.628 | 23 | 0.181 | 0.148 | 0.165 | 24 |
Tychy | 0.360 | 16 | 0.675 | 16 | 0.360 | 0.255 | 0.307 | 16 |
Zabrze | 0.025 | 27 | 0.588 | 27 | 0.025 | 0.056 | 0.040 | 27 |
Kielce | 0.425 | 11 | 0.681 | 15 | 0.425 | 0.271 | 0.348 | 14 |
Olsztyn | 0.197 | 23 | 0.659 | 18 | 0.197 | 0.220 | 0.209 | 20 |
Poznań | 0.669 | 4 | 0.841 | 3 | 0.669 | 0.635 | 0.652 | 4 |
Szczecin | 0.321 | 17 | 0.687 | 14 | 0.321 | 0.284 | 0.302 | 17 |
EDAS | WASPAS | Laplace Criterion | |
---|---|---|---|
EDAS | 1.000 | 0.971 | 0.992 |
WASPAS | 0.971 | 1.000 | 0.987 |
Laplace criterion | 0.992 | 0.987 | 1.000 |
Cities | Economy, Education, and Innovation | Life Standard and Safety | Health | Environment and Energy | Infrastructure | Government | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AS | R | AS | R | AS | R | AS | R | AS | R | AS | R | |
Wrocław | 0.673 | 3 | 0.583 | 10 | 0.495 | 13 | 0.240 | 21 | 0.508 | 13 | 0.606 | 6 |
Bydgoszcz | 0.208 | 21 | 0.249 | 25 | 0.568 | 10 | 0.689 | 4 | 0.588 | 9 | 1.000 | 1 |
Toruń | 0.225 | 19 | 0.787 | 2 | 0.170 | 21 | 0.653 | 6 | 0.161 | 25 | 0.490 | 11 |
Lublin | 0.397 | 10 | 0.633 | 8 | 0.910 | 2 | 0.642 | 7 | 0.936 | 1 | 0.345 | 21 |
Gorzów Wielkopolski | 0.000 | 29 | 0.110 | 29 | 0.152 | 22 | 0.850 | 2 | 0.131 | 26 | 0.503 | 10 |
Zielona Góra | 0.185 | 23 | 0.388 | 20 | 0.228 | 20 | 0.093 | 24 | 0.628 | 7 | 0.540 | 8 |
Łódź | 0.317 | 15 | 0.365 | 21 | 0.572 | 9 | 0.428 | 15 | 0.588 | 10 | 0.458 | 16 |
Kraków | 0.697 | 2 | 0.800 | 1 | 0.556 | 12 | 0.089 | 25 | 0.419 | 16 | 0.323 | 24 |
Radom | 0.191 | 22 | 0.518 | 14 | 0.253 | 19 | 0.638 | 8 | 0.861 | 2 | 0.000 | 29 |
Warszawa | 1.000 | 1 | 0.743 | 4 | 0.582 | 8 | 0.352 | 17 | 0.392 | 17 | 0.841 | 2 |
Opole | 0.378 | 11 | 0.507 | 16 | 0.597 | 6 | 0.029 | 29 | 0.743 | 4 | 0.465 | 14 |
Rzeszów | 0.492 | 8 | 0.529 | 13 | 0.762 | 3 | 1.000 | 1 | 0.794 | 3 | 0.442 | 18 |
Białystok | 0.356 | 13 | 0.669 | 7 | 0.585 | 7 | 0.741 | 3 | 0.637 | 6 | 0.210 | 28 |
Gdańsk | 0.603 | 5 | 0.785 | 3 | 0.335 | 16 | 0.542 | 12 | 0.207 | 21 | 0.636 | 4 |
Gdynia | 0.542 | 6 | 0.490 | 17 | 0.103 | 27 | 0.452 | 14 | 0.175 | 24 | 0.487 | 12 |
Bielsko-Biała | 0.358 | 12 | 0.538 | 12 | 0.303 | 17 | 0.083 | 26 | 0.273 | 19 | 0.518 | 9 |
Bytom | 0.029 | 28 | 0.144 | 27 | 0.137 | 23 | 0.622 | 10 | 0.203 | 22 | 0.248 | 26 |
Częstochowa | 0.246 | 18 | 0.288 | 23 | 0.287 | 18 | 0.273 | 20 | 0.231 | 20 | 0.377 | 20 |
Gliwice | 0.446 | 9 | 0.516 | 15 | 0.124 | 24 | 0.221 | 23 | 0.334 | 18 | 0.331 | 23 |
Katowice | 0.507 | 7 | 0.279 | 24 | 1.000 | 1 | 0.043 | 27 | 0.724 | 5 | 0.540 | 7 |
Ruda Śląska | 0.053 | 26 | 0.121 | 28 | 0.007 | 28 | 0.452 | 13 | 0.028 | 28 | 0.315 | 25 |
Rybnik | 0.120 | 25 | 0.394 | 18 | 0.104 | 26 | 0.035 | 28 | 0.199 | 23 | 0.464 | 15 |
Sosnowiec | 0.165 | 24 | 0.166 | 26 | 0.110 | 25 | 0.411 | 16 | 0.000 | 29 | 0.382 | 19 |
Tychy | 0.307 | 16 | 0.707 | 5 | 0.000 | 29 | 0.283 | 19 | 0.110 | 27 | 0.483 | 13 |
Zabrze | 0.040 | 27 | 0.393 | 19 | 0.339 | 15 | 0.589 | 11 | 0.438 | 14 | 0.334 | 22 |
Kielce | 0.348 | 14 | 0.588 | 9 | 0.659 | 4 | 0.298 | 18 | 0.580 | 11 | 0.211 | 27 |
Olsztyn | 0.209 | 20 | 0.545 | 11 | 0.562 | 11 | 0.623 | 9 | 0.575 | 12 | 0.444 | 17 |
Poznań | 0.652 | 4 | 0.687 | 6 | 0.611 | 5 | 0.236 | 22 | 0.625 | 8 | 0.614 | 5 |
Szczecin | 0.302 | 17 | 0.322 | 22 | 0.412 | 14 | 0.653 | 5 | 0.420 | 15 | 0.674 | 3 |
Dimension | Level | |||
---|---|---|---|---|
Level I—Very High | Level II—High | Level III—Average | Level IV—Low | |
Economy, education, and innovation | Warszawa, Kraków, Poznań, Wrocław, Gdańsk | Gdynia, Lublin, Opole, Rzeszów, Białystok, Bielsko-Biała, Gliwice, Katowice, Szczecin | Bydgoszcz, Toruń, Zielona Góra, Łódź, Radom, Częstochowa, Rybnik, Sosnowiec, Tychy, Kielce, Olsztyn | Gorzów Wielkopolski, Bytom, Zabrze, Ruda Śląska |
Life standard and safety | Toruń, Kraków, Warszawa, Gdańsk, Tychy Poznań, | Wrocław, Lublin, Radom, Opole Rzeszów Białystok Gdynia Bielsko-Biała, Gliwice Kielce Olsztyn | Zielona Góra, Łódź, Częstochowa, Katowice Rybnik, Zabrze Szczecin | Bydgoszcz, Gorzów Wielkopolski, Bytom, Ruda Śląska Sosnowiec |
Health | Lublin, Opole Rzeszów | Wrocław Bydgoszcz, Zielona Góra Łódź, Radom, Białystok, Katowice, Zabrze Kielce Olsztyn Poznań Szczecin | Toruń, Kraków, Warszawa, Gdynia Bielsko-Biała Bytom Częstochowa Gliwice, Rybnik | Gorzów Wielkopolski, Gdańsk, Ruda Śląska, Sosnowiec Tychy |
Environment and energy | Rzeszów, Białystok, Gorzów Wielkopolski, Bydgoszcz | Łódź, Radom, Lublin, Toruń, Gdańsk, Gdynia, Bytom, Ruda Śląska, Zabrze, Olsztyn, Szczecin | Wrocław, Warsaw, Częstochowa Gliwice Sosnowiec Tychy Kielce Poznań | Zielona Góra, Kraków, Opole, Bielsko-Biała, Katowice, Rybnik, |
Infrastructure, transport, and accessibility | Gdynia, Warszawa, Wrocław | Poznań, Szczecin, Kielce, Katowice, Białystok, Gdańsk, Opole, Kraków, Toruń, Lublin | Olsztyn, Sosnowiec, Tychy, Częstochowa, Rzeszów, Radom, Gorzów Wielkopolski, Zielona Góra, Łódź, Bydgoszcz | Zabrze, Ruda Śląska, Rybnik, Gliwice, Bielsko-Biała, Bytom |
Government | Bydgoszcz, Warszawa, Szczecin | Wrocław, Toruń, Gorzów Wielkopolski, Zielona Góra Łódź, Opole, Gdańsk, Gdynia, Bielsko-Biała, Katowice, Rybnik, Tychy, Poznań | Lublin, Kraków, Rzeszów, Częstochowa, Gliwice, Ruda Śląska, Zabrze, Sosnowiec, Olsztyn | Radom, Białystok, Bytom, Kielce |
Level | |||
---|---|---|---|
Level I—high | Level II—Average | Level III—Average Low | Level IV—Low |
Wrocław, Lublin, Warszawa, Rzeszów, Poznań | Bydgoszcz, Toruń, Kraków, Opole, Rzeszów, Białystok, Gdynia, Katowice Kielce, Olsztyn, Szczecin | Gorzów Wielkopolski, Zielona Góra, Łódź, Radom, Bielsko-Biała, Częstochowa, Gliwice, Tychy | Bytom Ruda, Śląska, Rybnik, Sosnowiec, Zabrze |
Study Area and GDP Per Capita | Spearman Coefficient Value (for p = 0.05) | Study Area and Population | Spearman Coefficient Value (for p = 0.05) |
---|---|---|---|
Economy, education, and innovation | 0.86 | Economy, education, and innovation | 0.76 |
Life standard and safety | 0.44 | Life standard and safety | 0.39 |
Health | 0.24 | Health | 0.33 |
Environment and energy | −0.39 | Environment and energy | −0.25 |
Infrastructure, transport, and accessibility | 0.69 | Infrastructure | 0.66 |
Government | 0.53 | Government | 0.44 |
Smart Sustainable Cities Assessment Score | 0.7 | Smart Sustainable Cities Assessment Score | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brodny, J.; Tutak, M.; Bindzár, P. Measuring and Assessing the Level of Living Conditions and Quality of Life in Smart Sustainable Cities in Poland—Framework for Evaluation Based on MCDM Methods. Smart Cities 2024, 7, 1221-1260. https://doi.org/10.3390/smartcities7030052
Brodny J, Tutak M, Bindzár P. Measuring and Assessing the Level of Living Conditions and Quality of Life in Smart Sustainable Cities in Poland—Framework for Evaluation Based on MCDM Methods. Smart Cities. 2024; 7(3):1221-1260. https://doi.org/10.3390/smartcities7030052
Chicago/Turabian StyleBrodny, Jarosław, Magdalena Tutak, and Peter Bindzár. 2024. "Measuring and Assessing the Level of Living Conditions and Quality of Life in Smart Sustainable Cities in Poland—Framework for Evaluation Based on MCDM Methods" Smart Cities 7, no. 3: 1221-1260. https://doi.org/10.3390/smartcities7030052
APA StyleBrodny, J., Tutak, M., & Bindzár, P. (2024). Measuring and Assessing the Level of Living Conditions and Quality of Life in Smart Sustainable Cities in Poland—Framework for Evaluation Based on MCDM Methods. Smart Cities, 7(3), 1221-1260. https://doi.org/10.3390/smartcities7030052