How 3D Printing Technology Makes Cities Smarter: A Review, Thematic Analysis, and Perspectives
Abstract
:Highlights
- Key benefits of 3D printing include reducing construction time and material waste, lowering costs, and enabling the creation of scalable, affordable housing solutions.
- Existing challenges remain in terms of cost, scalability, and the need for interdisciplinary collaboration among engineers, urban planners, and policymakers for smart cities.
- Three-dimensional printing or additive manufacturing (AM) offers potential pathways for sustainable urban development.
- A roadmap for future research and practical applications of 3D printing in smart cities, contributing to the ongoing discourse on sustainable and technologically advanced urban development, is provided.
Abstract
1. Introduction
2. Methodology
2.1. In-/Exclusion Criteria
2.1.1. Inclusion Criteria
- Regarding the utilization of 3D printing from a smart city perspective;
- Including current 3D printing technologies with a published date later than 2015;
- Providing a detailed explanation of the effectiveness that each technology offers;
- Must be in a smart city setting;
- Only English language used.
2.1.2. Exclusion Criteria
- Excluding topics focused on medical, pharmaceutical, automative, 4D printing, material microstructure applications;
- General argument;
- Trade article;
- Based on another study;
- The investigation lacks adequate information regarding the AR/VR technology.
2.2. Data Extraction
3. Review Analysis and Discussion
3.1. Thematic Analysis on Keywords
3.2. Digital Twins (DTs) in 3D Printing for Smart Cities
3.3. Three-Dimensional Printing in Industry 4.0 for Smart Cities
3.4. Smart 3D Printing Materials for Smart Cities
- Regarding the policy setup, integrating smart materials into existing construction processes requires new proper standards and protocols to ensure compatibility with other materials and systems [200]. This requires collaboration between inventors, city planners, and policymakers to deliberate on the progressive development of future smart cities.
3.5. Three-Dimensional Printing in Soft Robotics for Smart Cities
3.6. Wire-Arc Additive Manufacturing (WAAM) for Smart Cities
3.7. Machine Learning (ML) in 3D Printing for Smart Cities
3.8. Three-Dimensional Printing in Structural Health Monitoring (SHM) for Smart Cities
3.9. Repair Strategies in 3D Printing for Smart Cities
4. Conclusions
- The review elucidates the interaction of DTs, smart materials, Industry 4.0, soft robotics, ML, SHM, WAAM, and repair strategies for construction, urban planning, smart infrastructure, and environmental sustainability through the integration of many views. All of the mentioned areas have research gaps and roadmaps to notably improve the future of smart cities.
- DTs and 3D printing can be utilized in producing building elements in existing buildings.
- Industry 4.0 presents the future of mass-customized digital construction.
- Smart materials in 3D printing offer distinct benefits like improved building, electrical, and functional performance, reduced energy consumption, and enhanced durability.
- ML can evaluate past performance data from diverse components from existing smart buildings to forecast maintenance requirements as well as predict and control environmental conditions and cities for more livable communities.
- Soft robotics are key for human interaction with automated machines, with implementation varying from medicine to gardening and farming.
- SHM is the key to inspecting and maintain safety in cities with less cost and more security regarding unpredictable, diverse events.
- Repair strategies of existing building structures can be made easier and more effective by the WAAM approach, yielding strategized planning of repairs for communities, minimizing the possibility of failure, and enhancing resource distribution.
Funding
Data Availability Statement
Conflicts of Interest
References
- Dixon, T.; Eames, M. Sustainable urban development to 2050: Complex transitions in the built environment of cities. In Urban Retrofitting for Sustainability; Routledge: London, UK, 2014; pp. 19–47. [Google Scholar]
- Asif, M.; Naeem, G.; Khalid, M. Digitalization for sustainable buildings: Technologies, applications, potential, and challenges. J. Clean. Prod. 2024, 450, 141814. [Google Scholar] [CrossRef]
- Žujović, M.; Obradović, R.; Rakonjac, I.; Milošević, J. 3D printing technologies in architectural design and construction: A systematic literature review. Buildings 2022, 12, 1319. [Google Scholar] [CrossRef]
- Darwish, L.R.; El-Wakad, M.T.; Farag, M.M. Towards sustainable industry 4.0: A green real-time IIoT multitask scheduling architecture for distributed 3D printing services. J. Manuf. Syst. 2021, 61, 196–209. [Google Scholar] [CrossRef]
- Li, L.; Lange, K.W. Planning principles for integrating community empowerment into zero-net carbon transformation. Smart Cities 2022, 6, 100–122. [Google Scholar] [CrossRef]
- Loy, J.; Novak, J.I. Additive manufacturing for a dematerialized economy. In Sustainable Manufacturing and Design; Elsevier: Amsterdam, The Netherlands, 2021; pp. 19–45. [Google Scholar]
- Wang, Q.-C.; Yu, S.-N.; Chen, Z.-X.; Weng, Y.-W.; Xue, J.; Liu, X. Promoting additive construction in fast-developing areas: An analysis of policies and stakeholder perspectives. Dev. Built Environ. 2023, 16, 100271. [Google Scholar] [CrossRef]
- Sachs, J.D.; Lafortune, G.; Fuller, G.; Drumm, E. Sustainable Development Report 2023: Implementing the SDG Stimulus; Dublin University Press: Dublin, Ireland, 2023. [Google Scholar]
- Bamigboye, G.O.; Bassey, D.E.; Olukanni, D.O.; Ngene, B.U.; Adegoke, D.; Odetoyan, A.O.; Kareem, M.A.; Enabulele, D.O.; Nworgu, A.T. Waste materials in highway applications: An overview on generation and utilization implications on sustainability. J. Clean. Prod. 2021, 283, 124581. [Google Scholar] [CrossRef]
- Ahmed, G.H. A review of “3D concrete printing”: Materials and process characterization, economic considerations and environmental sustainability. J. Build. Eng. 2023, 66, 105863. [Google Scholar] [CrossRef]
- Muriungi, K.; Chumo, K.P. Building Future-Proof, Sustainable, and Innovative Startups in Africa Powered by Smart Cities. In Green Computing for Sustainable Smart Cities; CRC Press: Boca Raton, FL, USA, 2024; pp. 172–205. [Google Scholar]
- Kumar, K.; Zindani, D.; Davim, J.P. Rapid Prototyping, Rapid Tooling and Reverse Engineering: From Biological Models to 3D Bioprinters; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2020; Volume 5. [Google Scholar]
- Jiramarootapong, P.; Prasittisopin, L.; Snguanyat, C.; Tanapornraweekit, G.; Tangtermsirikul, S. Load carrying capacity and failure mode of 3D printing mortar wall panel under axial compression loading. In Second RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete; Springer: Cham, Switzerland, 2020; pp. 646–657. [Google Scholar]
- Prasittisopin, L.; Sakdanaraseth, T.; Horayangkura, V. Design and construction method of a 3D concrete printing self-supporting curvilinear pavilion. J. Archit. Eng. 2021, 27, 05021006. [Google Scholar] [CrossRef]
- Sadakorn, W.; Prasertsuk, S.; Prasittisopin, L. 3D Cement Printing: DFMA Guideline of Patterned Load-Bearing Walls for Small Residential Units. In International Conference on Civil Engineering and Architecture, 2022; Springer: Singapore, 2022; pp. 19–28. [Google Scholar]
- Bhanye, J.; Lehobo, M.T.; Mocwagae, K.; Shayamunda, R. Strategies for sustainable innovative affordable housing (SIAH) for low income families in africa: A rapid review study. Discov. Sustain. 2024, 5, 157. [Google Scholar] [CrossRef]
- Berjozkina, G.; Karami, R. 3D printing in tourism: An answer to sustainability challenges? Worldw. Hosp. Tour. Themes 2021, 13, 773–788. [Google Scholar]
- Ayad, T.H.; Shehata, A.E.S. The Polential Impact of 3D printing technologies on travel and hospitality industry. J. Assoc. Arab Univ. Tour. Hosp. 2014, 11, 49–58. [Google Scholar] [CrossRef]
- Schelly, C.; Anzalone, G.; Wijnen, B.; Pearce, J.M. Open-source 3-D printing technologies for education: Bringing additive manufacturing to the classroom. J. Vis. Lang. Comput. 2015, 28, 226–237. [Google Scholar] [CrossRef]
- Maloy, R.; Kommers, S.; Malinowski, A.; LaRoche, I. 3D modeling and printing in history/social studies classrooms: Initial lessons and insights. Contemp. Issues Technol. Teach. Educ. 2017, 17, 229–249. [Google Scholar]
- Houser, K. World’s Largest 3D-Printed Affordable Housing Project Launches in Kenya; Freethink: New York, NY, USA, 2023. [Google Scholar]
- Faleschini, F.; Trento, D.; Masoomi, M.; Pellegrino, C.; Zanini, M.A. Sustainable mixes for 3D printing of earth-based constructions. Constr. Build. Mater. 2023, 398, 132496. [Google Scholar] [CrossRef]
- Tetiranont, S.; Sadakorn, W.; Rugkhapan, N.T.; Prasittisopin, L. Enhancing sustainable railway station design in tropical climates: Insights from Thailand’s architectural theses and case studies. Buildings 2024, 14, 829. [Google Scholar] [CrossRef]
- Mikula, K.; Skrzypczak, D.; Izydorczyk, G.; Warchoł, J.; Moustakas, K.; Chojnacka, K.; Witek-Krowiak, A. 3D printing filament as a second life of waste plastics—A review. Environ. Sci. Pollut. Res. 2021, 28, 12321–12333. [Google Scholar] [CrossRef]
- Madhu, N.R.; Erfani, H.; Jadoun, S.; Amir, M.; Thiagarajan, Y.; Chauhan, N.P.S. Fused deposition modelling approach using 3D printing and recycled industrial materials for a sustainable environment: A review. Int. J. Adv. Manuf. Technol. 2022, 122, 2125–2138. [Google Scholar] [CrossRef]
- Bartolomei, S.S.; da Silva, F.L.F.; de Moura, E.A.B.; Wiebeck, H. Recycling expanded polystyrene with a biodegradable solvent to manufacture 3D printed prototypes and finishing materials for construction. J. Polym. Environ. 2022, 30, 3701–3717. [Google Scholar] [CrossRef]
- Bremer, M.; Janoschek, L.; Kaschta, D.; Schneider, N.; Wahl, M. Influence of plastic recycling—A feasibility study for additive manufacturing using glycol modified polyethylene terephthalate (PETG). SN Appl. Sci. 2022, 4, 156. [Google Scholar] [CrossRef]
- de Rubeis, T. 3D-Printed Blocks: Thermal Performance Analysis and Opportunities for Insulating Materials. Sustainability 2022, 14, 1077. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, J.; Li, Z.; Feng, X. Experimental study on the thermal performance of a 3D printed concrete prototype building. Energy Build. 2021, 241, 110965. [Google Scholar] [CrossRef]
- Sánchez-Corcuera, R.; Nuñez-Marcos, A.; Sesma-Solance, J.; Bilbao-Jayo, A.; Mulero, R.; Zulaika, U.; Azkune, G.; Almeida, A. Smart cities survey: Technologies, application domains and challenges for the cities of the future. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719853984. [Google Scholar] [CrossRef]
- O’Dea, R.E.; Lagisz, M.; Jennions, M.D.; Koricheva, J.; Noble, D.W.; Parker, T.H.; Gurevitch, J.; Page, M.J.; Stewart, G.; Moher, D. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: A PRISMA extension. Biol. Rev. 2021, 96, 1695–1722. [Google Scholar] [CrossRef] [PubMed]
- Zastrow, M. The new 3D printing. Nature 2020, 578, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Ju, K.; Chen, H.; Mirabolghasemi, A.; Akhtar, S.; Sasmito, A.; Akbarzadeh, A. 3D printed architected shell-based ferroelectric metamaterials with programmable piezoelectric and pyroelectric properties. Nano Energy 2024, 123, 109385. [Google Scholar] [CrossRef]
- Mu, H.; He, F.; Yuan, L.; Hatamian, H.; Commins, P.; Pan, Z. Online distortion simulation using generative machine learning models: A step toward digital twin of metallic additive manufacturing. J. Ind. Inf. Integr. 2024, 38, 100563. [Google Scholar] [CrossRef]
- Salaimanimagudam, M.P.; Jayaprakash, J. Selection of digital fabrication technique in the construction industry—A multi-criteria decision-making approach. Front. Struct. Civ. Eng. 2024, 18, 977–997. [Google Scholar] [CrossRef]
- Paunikar, S.; Galanopoulos, G.; Rebillat, M.; Wirth, I.; Monteiro, E.; Margerit, P.; Mechbal, N. Printed PZT Transducers Network for the Structural Health Monitoring of Foreign Object Damage Composite Panel. In Proceedings of the 11th European Workshop on Structural Health Monitoring, EWSHM, Potsdam, Germany, 10–13 June 2024. [Google Scholar]
- Rojek, I.; Marciniak, T.; Mikołajewski, D. Digital twins in 3D printing processes using artificial intelligence. Electronics 2024, 13, 3550. [Google Scholar] [CrossRef]
- Mattera, G.; Nele, L.; Paolella, D. Monitoring and control the wire arc additive manufacturing process using artificial intelligence techniques: A review. J. Intell. Manuf. 2024, 35, 467–497. [Google Scholar] [CrossRef]
- Corzo, D.; Alexandre, E.B.; Alshareef, Y.; Bokhari, F.; Xin, Y.; Zhang, Y.; Kosel, J.; Bryant, D.; Lubineau, G.; Baran, D. Cure-on-demand 3D printing of complex geometries for enhanced tactile sensing in soft robotics and extended reality. Mater. Today 2024, 78, 20–31. [Google Scholar] [CrossRef]
- Shufrin, I.; Pasternak, E.; Dyskin, A. Environmentally friendly smart construction—Review of recent developments and opportunities. Appl. Sci. 2023, 13, 12891. [Google Scholar] [CrossRef]
- Botero-Valencia, J.; Martinez-Perez, A.; Hernández-García, R.; Castano-Londono, L. Exploring spatial patterns in sensor data for humidity, temperature, and RSSI measurements. Data 2023, 8, 82. [Google Scholar] [CrossRef]
- Engel, L.; Khouri, D.; Lomakin, K.; Hofmann, A.; Kleinlein, M.; Ullmann, I.; Vossiek, M.; Gold, G. 3D printed hemispherically radiating antenna for broadband millimeter wave applications. IEEE Open J. Antennas Propag. 2023, 4, 558–570. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, G.; Chiumenti, M.; Cervera, M.; Slimani, M.; Ma, L.; Wei, L.; Lin, X. Smart-substrate: A novel structural design to avert residual stress accretion in directed energy deposition additive manufacturing. Virtual Phys. Prototyp. 2023, 18, e2246041. [Google Scholar] [CrossRef]
- Raymond, L.; Bandala, E.; Coulter, R.; Valentin, N.; Mitchell, K.; Hua, W.; Zhang, C.; Zhao, D.; Jin, Y. Hybrid direct ink writing/embedded three-dimensional printing of smart hinge from shape memory polymer. Manuf. Lett. 2023, 35, 609–619. [Google Scholar] [CrossRef]
- Stano, G.; Ovy, S.M.A.I.; Edwards, J.R.; Cianchetti, M.; Percoco, G.; Tadesse, Y. One-shot additive manufacturing of robotic finger with embedded sensing and actuation. Int. J. Adv. Manuf. Technol. 2023, 124, 467–485. [Google Scholar] [CrossRef]
- Keller, S.; Stein, M.; Ilic, O. Material extrusion on an ultrasonic air bed for 3D printing. J. Vib. Acoust. 2023, 145, 061001. [Google Scholar] [CrossRef]
- Mu, H.; He, F.; Yuan, L.; Commins, P.; Wang, H.; Pan, Z. Toward a smart wire arc additive manufacturing system: A review on current developments and a framework of digital twin. J. Manuf. Syst. 2023, 67, 174–189. [Google Scholar] [CrossRef]
- Dhall, S.; Rab, S.; Pal, S.K.; Javaid, M.; Khan, A.A.; Haleem, A. Identifying the feasibility of ‘travelator roads’ for modern-era sustainable transportation and its prototyping using additive manufacturing. Sustain. Oper. Comput. 2023, 4, 119–129. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, R.; Ahuja, I.S. Smart Thermoplastics for Maintenance and Repair of Heritage Structures. Encycl. Mater. Plast. Polym. 2022, 1, 524–532. [Google Scholar]
- Binder, M.; Stapff, V.; Heinig, A.; Schmitt, M.; Seidel, C.; Reinhart, G. Additive manufacturing of a passive, sensor-monitored 16MnCr5 steel gear incorporating a wireless signal transmission system. Procedia CIRP 2022, 107, 505–510. [Google Scholar] [CrossRef]
- Ranjan, R.; Kumar, D.; Kundu, M.; Chandra Moi, S. A critical review on classification of materials used in 3D printing process. Mater. Today Proc. 2022, 61, 43–49. [Google Scholar] [CrossRef]
- Tapas, N.; Belikovetsky, S.; Longo, F.; Puliafito, A.; Shabtai, A.; Elovici, Y. 3D Marketplace: Distributed Attestation of 3D Designs on Blockchain. In Proceedings of the 2022 IEEE International Conference on Smart Computing, SMARTCOMP, Helsinki, Finland, 20–24 June 2022; pp. 311–316. [Google Scholar]
- Alfattni, R. Comprehensive study on materials used in different types of additive manufacturing and their applications. Int. J. Math. Eng. Manag. Sci. 2022, 7, 92–114. [Google Scholar] [CrossRef]
- Safaee, S.; Otero, A.; Fei, M.; Liu, T.; Zhang, J.; Chen, R.K. Particle-resin systems for additive manufacturing of rigid and elastic magnetic polymeric composites. Addit. Manuf. 2022, 51, 102587. [Google Scholar] [CrossRef]
- Jian, B.; Demoly, F.; Zhang, Y.; Qi, H.J.; André, J.C.; Gomes, S. Origami-based design for 4D printing of 3D support-free hollow structures. Engineering 2022, 12, 70–82. [Google Scholar] [CrossRef]
- Gupta, S.; Bag, S.; Modgil, S.; Beatriz Lopes de Sousa Jabbour, A.; Kumar, A. Examining the influence of big data analytics and additive manufacturing on supply chain risk control and resilience: An empirical study. Comput. Ind. Eng. 2022, 172, 108629. [Google Scholar] [CrossRef]
- Liu, C.; Chang, J. Electronics—A First Course for Printed Circuit Board Design. In Proceedings of the ASEE Annual Conference and Exposition, Conference Proceedings, Minneapolis, MN, USA, 26–29 June 2022. [Google Scholar]
- Kyvelou, P.; Buchanan, C.; Gardner, L. Numerical simulation and evaluation of the world’s first metal additively manufactured bridge. Structures 2022, 42, 405–416. [Google Scholar] [CrossRef]
- Lubin, L.; Nwokedi, I.; Diwan, Y.; Moreno, O.; Kippelen, B. Luminaire for Connected Lighting System with Spectrum that Mimics Natural Light. In Proceedings of the 2022 Opportunity Research Scholars Symposium, ORSS, Atlanta, GA, USA, 27 April 2022; pp. 49–52. [Google Scholar]
- Reisch, R.T.; Hauser, T.; Lutz, B.; Tsakpinis, A.; Winter, D.; Kamps, T.; Knoll, A. Context awareness in process monitoring of additive manufacturing using a digital twin. Int. J. Adv. Manuf. Technol. 2022, 119, 3483–3500. [Google Scholar] [CrossRef]
- Rubino, M.; Weng, M.; Chen, J.; Saptarshi, S.; Francisco, M.; Francisco, A.; Zhou, C.; Sun, H.; Xu, W. A Campus Prototype of Interactive Digital Twin in Cyber Manufacturing. In Proceedings of the SenSys 2022: Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, Boston, MA, USA, 6–9 November 2022; pp. 758–759. [Google Scholar]
- Na, S.; Kim, S.; Moon, S. Additive manufacturing (3D Printing)-applied construction: Smart node system for an irregular building façade. J. Build. Eng. 2022, 56, 104743. [Google Scholar] [CrossRef]
- Ferretti, P.; Santi, G.M.; Leon-Cardenas, C.; Freddi, M.; Donnici, G.; Frizziero, L.; Liverani, A. Molds with advanced materials for carbon fiber manufacturing with 3d printing technology. Polymers 2021, 13, 3700. [Google Scholar] [CrossRef]
- Eleftheriadis, G.K.; Genina, N.; Boetker, J.; Rantanen, J. Modular design principle based on compartmental drug delivery systems. Adv. Drug Deliv. Rev. 2021, 178, 113921. [Google Scholar] [CrossRef] [PubMed]
- Cohn, D.; Zarek, M.; Elyashiv, A.; Sbitan, M.A.; Sharma, V.; Ramanujan, R.V. Remotely triggered morphing behavior of additively manufactured thermoset polymer-magnetic nanoparticle composite structures. Smart Mater. Struct. 2021, 30, 045022. [Google Scholar] [CrossRef]
- Alwis, L.S.M.; Bremer, K.; Roth, B. Fiber optic sensors embedded in textile-reinforced concrete for smart structural health monitoring: A review. Sensors 2021, 21, 4948. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, F.; Long, Y.; Dong, Y.; Wang, Y.; Wang, X. Bulk ferroelectric metamaterial with enhanced piezoelectric and biomimetic mechanical properties from additive manufacturing. ACS Nano 2021, 15, 14903–14914. [Google Scholar] [CrossRef]
- Villacres, J.; Guaman, R.; Menendez, O.; Auat Cheein, F. 3D Printing Deformation Estimation Using Artificial Vision Strategies for Smart-Construction. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021. [Google Scholar]
- Mileti, I.; Cortese, L.; Del Prete, Z.; Palermo, E. Reproducibility and embedding effects on static performace of 3D printed strain gauges. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT, Rome, Italy, 7–9 June 2021; pp. 499–504. [Google Scholar]
- Zhang, X.; Liou, F. Introduction to additive manufacturing. In Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–31. [Google Scholar]
- Surie, G. DIGITAL TECHNOLOGIES AND THE WORLD OF THE FUTURE: IMPLICATIONS FOR THE MANAGEMENT OF TECHNOLOGY. In Proceedings of the 30th International Conference of the International Association for Management of Technology, IAMOT 2021—MOT for the World of the Future, Cairo, Egypt, 19–23 September 2021; pp. 173–189. [Google Scholar]
- Vlachakis, C.; Perry, M.; Biondi, L.; McAlorum, J. 3D printed temperature-sensing repairs for concrete structures. Addit. Manuf. 2020, 34, 101238. [Google Scholar] [CrossRef]
- Fan, J.; Gonzalez, D.; Garcia, J.; Newell, B.; Nawrocki, R.A. In The effects of additive manufacturing and electric poling techniques on PVdF thin films: Towards 3D printed functional materials. In Proceedings of the ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS, Online, 15 September 2020. [Google Scholar]
- Jin, Z.; Zhang, Z.; Demir, K.; Gu, G.X. Machine learning for advanced additive manufacturing. Matter 2020, 3, 1541–1556. [Google Scholar] [CrossRef]
- Hehr, A.; Norfolk, M.; Kominsky, D.; Boulanger, A.; Davis, M.; Boulware, P. Smart build-plate for metal additive manufacturing processes. Sensors 2020, 20, 360. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D.; Jiang, T.; Xiao, H. Realtime Control-oriented Modeling and Disturbance Parameterization for Smart and Reliable Powder Bed Fusion Additive Manufacturing. In Proceedings of the Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, SFF, Austin, TX, USA, 13–15 August 2018; pp. 2335–2348. [Google Scholar]
- Castle, H. Disrupting from the Inside: UK archipreneurs. Arch. Des. 2020, 90, 40–49. [Google Scholar] [CrossRef]
- Chen, K.W.; Tsai, M.J. Multi-Nozzle Pneumatic Extrusion Based Additive Manufacturing System for Fabricating a Sandwich Structure with Soft and Hard Material. In Proceedings of the 2019 International Conference on Machine Learning and Cybernetics (ICMLC), Kobe, Japan, 7–10 July 2019. [Google Scholar]
- Zhang, J.; Wang, J.; Dong, S.; Yu, X.; Han, B. A review of the current progress and application of 3D printed concrete. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105533. [Google Scholar] [CrossRef]
- Hamidi, F.; Aslani, F. Additive manufacturing of cementitious composites: Materials, methods, potentials, and challenges. Constr. Build. Mater. 2019, 218, 582–609. [Google Scholar] [CrossRef]
- Yoon, J. SMP Prototype design and fabrication for thermo-responsive façade elements. J. Facade Des. Eng. 2019, 7, 41–61. [Google Scholar]
- Tay, Y.W.D.; Panda, B.N.; Ting, G.H.A.; Ahamed, N.M.N.; Tan, M.J.; Chua, C.K. 3D printing for sustainable construction. In Industry 4.0—Shaping the Future of the Digital World; CRC Press: Boca Raton, FL, USA, 2019; pp. 119–123. [Google Scholar]
- Yu, Y.; Mikkilineni, A.K.; Killough, S.M.; Kuruganti, T.; Joshi, P.C.; Hu, A. Direct-Write Printed Current Sensor for Load Monitoring Applications. In Proceedings of the 2019 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT, Washington, DC, USA, 18–21 February 2019. [Google Scholar]
- Chhetri, S.R.; Faezi, S.; Canedo, A.; Faruque, M.A.A. In QUILT: Quality inference from living digital twins in IoT-enabled manufacturing systems. In Proceedings of the 2019 Internet of Things Design and Implementation, Montreal, QC, Canada, 15–18 April 2019; pp. 237–248. [Google Scholar]
- Mallineni, S.S.K.; Dong, Y.; Behlow, H.; Rao, A.M.; Podila, R. A wireless triboelectric nanogenerator. Adv. Energy Mater. 2018, 8, 1702736. [Google Scholar] [CrossRef]
- Arrizubieta, J.I.; Ruiz, J.E.; Martinez, S.; Ukar, E.; Lamikiz, A. Intelligent nozzle design for the laser metal deposition process in the industry 4.0. Procedia Manuf. 2017, 13, 1237–1244. [Google Scholar] [CrossRef]
- Emon, M.O.F.; Choi, J.W. In A prelimiary study on 3D printed smart insoles with stretchable piezoresistive sensors for plantar pressure monitoring. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017. [Google Scholar]
- Mathew, J.; Hauser, C.; Stoll, P.; Kenel, C.; Polyzos, D.; Havermann, D.; Macpherson, W.N.; Hand, D.P.; Leinenbach, C.; Spierings, A.; et al. Integrating Fiber Fabry-Perot Cavity Sensor into 3-D Printed Metal Components for Extreme High-Temperature Monitoring Applications. IEEE Sens. J. 2017, 17, 4107–4114. [Google Scholar] [CrossRef]
- Paritala, P.K.; Manchikatla, S.; Yarlagadda, P.K.D.V. Digital manufacturing-applications past, current, and future trends. Procedia Eng. 2017, 174, 982–991. [Google Scholar] [CrossRef]
- Gooding, J.; Mahoney, J.F.; Fields, T.D. 3D printed strain gauge geometry and orientation for embedded sensing. In Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Jackson, R.; Curran, S.; Chambon, P.; Post, B.; Love, L.; Wagner, R.; Ozpineci, B.; Chinthavali, M.; Starke, M.; Green, J.; et al. Overview of the oak ridge national laboratory advanced manufacturing integrated energy demonstration project: Case study of additive manufacturing as a tool to enable rapid innovation in integrated energy systems. In Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, AZ, USA, 11–17 November 2016. [Google Scholar]
- Shafaroudi, A.A.; Rankohi, S. Multifunctional and multiphysics materials as load-bearing structural components. In Proceedings of the 2016 Annual Conference of the Canadian Society for Civil Engineering, London, UK, 1–4 June 2016; pp. 2108–2116. [Google Scholar]
- Ghazanfari, A.; Li, W.; Leu, M.C.; Zhuang, Y.; Huang, J. Advanced ceramic components with embedded sapphire optical fiber sensors for high temperature applications. Mater. Des. 2016, 112, 197–206. [Google Scholar] [CrossRef]
- Kimionis, J.; Isakov, M.; Koh, B.S.; Georgiadis, A.; Tentzeris, M.M. 3D-Printed origami packaging with inkjet-printed antennas for RF harvesting sensors. IEEE Trans. Microw. Theory Tech. 2015, 63, 4521–4532. [Google Scholar] [CrossRef]
- Korenhof, P.; Blok, V.; Kloppenburg, S. Steering representations—Towards a critical understanding of digital twins. Philos. Technol. 2021, 34, 1751–1773. [Google Scholar] [CrossRef]
- Grübel, J.; Thrash, T.; Aguilar, L.; Gath-Morad, M.; Chatain, J.; Sumner, R.W.; Hölscher, C.; Schinazi, V.R. The hitchhiker’s guide to fused twins: A review of access to digital twins in situ in smart cities. Remote Sens. 2022, 14, 3095. [Google Scholar] [CrossRef]
- Vatani, M.; Lu, Y.; Engeberg, E.D.; Choi, J.W. Combined 3D printing technologies and material for fabrication of tactile sensors. Int. J. Precis. Eng. Manuf. 2015, 16, 1375–1383. [Google Scholar] [CrossRef]
- Tuvayanond, W.; Prasittisopin, L. Design for manufacture and assembly of digital fabrication and additive manufacturing in construction: A review. Buildings 2023, 13, 429. [Google Scholar] [CrossRef]
- Kristombu Baduge, S.; Navaratnam, S.; Abu-Zidan, Y.; McCormack, T.; Nguyen, K.; Mendis, P.; Zhang, G.; Aye, L. Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods. Structures 2021, 29, 1597–1609. [Google Scholar] [CrossRef]
- Sadakorn, W.; Prasertsuk, S.; Prasittisopin, L. Improving the structural efficiency of textured three-dimensional concrete printing wall by architectural design. Front. Struct. Civ. Eng. 2024, 18, 699–715. [Google Scholar] [CrossRef]
- Bibri, S.E.; Huang, J.; Jagatheesaperumal, S.K.; Krogstie, J. The synergistic interplay of artificial intelligence and digital twin in environmentally planning sustainable smart cities: A comprehensive systematic review. Environ. Sci. Ecotechnol. 2024, 20, 100433. [Google Scholar] [CrossRef] [PubMed]
- Sagl, G.; Resch, B.; Blaschke, T. Contextual sensing: Integrating contextual information with human and technical geo-sensor information for smart cities. Sensors 2015, 15, 17013–17035. [Google Scholar] [CrossRef] [PubMed]
- Sangawongse, S.; Ruangrit, V. Towards a GIS-based urban information system to plan a smarter Chiang Mai. Nakhara J. Environ. Des. Plan. 2015, 11, 1. [Google Scholar]
- Attaran, S.; Attaran, M.; Celik, B.G. Digital twins and industrial internet of things: Uncovering operational intelligence in industry 4.0. Decis. Anal. J. 2024, 10, 100398. [Google Scholar] [CrossRef]
- Richter, M.A.; Hagenmaier, M.; Bandte, O.; Parida, V.; Wincent, J. Smart cities, urban mobility and autonomous vehicles: How different cities needs different sustainable investment strategies. Technol. Forecast. Soc. Chang. 2022, 184, 121857. [Google Scholar] [CrossRef]
- Xia, H.; Liu, Z.; Efremochkina, M.; Liu, X.; Lin, C. Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration. Sustain. Cities Soc. 2022, 84, 104009. [Google Scholar] [CrossRef]
- Yeh, A.G. From urban modelling, GIS, the digital, intelligent, and the smart city to the digital twin city with AI. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 1085–1088. [Google Scholar] [CrossRef]
- Riedelsheimer, T.; Neugebauer, S.; Lindow, K. Progress for life cycle sustainability assessment by means of digital lifecycle twins—A taxonomy. In EcoDesign and Sustainability II; Springer: Singapore, 2021; pp. 329–345. [Google Scholar]
- Tetiranont, S.; Sadakorn, W.; Sreshthaputra, A.; Aniwattanapong, D.; Prasittisopin, L. Beyond the hype: Quantifying the impact of VR visualization on client preferences and price perception in AEC client pitching. Arch. Sci. Rev. 2024, 1–16. [Google Scholar] [CrossRef]
- Waqar, A.; Othman, I.; Almujibah, H.; Khan, M.B.; Alotaibi, S.; Elhassan, A.A. Factors influencing adoption of digital twin advanced technologies for smart city development: Evidence from Malaysia. Buildings 2023, 13, 775. [Google Scholar] [CrossRef]
- Omrany, H.; Al-Obaidi, K.M. Application of digital twin technology for urban heat island mitigation: Review and conceptual framework. Smart Sustain. Built Environ. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Kumalasari, D.; Koeva, M.; Vahdatikhaki, F.; Petrova Antonova, D.; Kuffer, M. Planning walkable cities: Generative design approach towards digital twin implementation. Remote Sens. 2023, 15, 1088. [Google Scholar] [CrossRef]
- Lee, J.; Babcock, J.; Pham, T.S.; Bui, T.H.; Kang, M. Smart city as a social transition towards inclusive development through technology: A tale of four smart cities. Int. J. Urban Sci. 2023, 27 (Suppl. S1), 75–100. [Google Scholar] [CrossRef]
- Prasittisopin, L.; Kitkuakul, P.; Chotchakornpant, K.; Rugkhapan, N.T. Implementing the sister city policy: Perspectives from Thailand. Nakhara J. Environ. Des. Plan. 2024, 23, 413. [Google Scholar] [CrossRef]
- Cui, J.; Ren, L.; Mai, J.; Zheng, P.; Zhang, L. 3D printing in the context of cloud manufacturing. Robot. Comput. Integr. Manuf. 2022, 74, 102256. [Google Scholar] [CrossRef]
- Kanthimathi, T.; Rathika, N.; Fathima, A.J.; Rajesh, K.S.; Srinivasan, S.; Thamizhamuthu, R. Robotic 3D Printing for Customized Industrial Components: IoT and AI-Enabled Innovation. In Proceedings of the 2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 18–19 January 2024; pp. 509–513. [Google Scholar]
- Yang, F.; Gu, S. Industry 4.0, a revolution that requires technology and national strategies. Complex Intell. Syst. 2021, 7, 1311–1325. [Google Scholar] [CrossRef]
- Belli, L.; Cilfone, A.; Davoli, L.; Ferrari, G.; Adorni, P.; Di Nocera, F.; Dall’Olio, A.; Pellegrini, C.; Mordacci, M.; Bertolotti, E. IoT-enabled smart sustainable cities: Challenges and approaches. Smart Cities 2020, 3, 1039–1071. [Google Scholar] [CrossRef]
- Kang, K.; Tan, B.Q.; Zhong, R.Y. Cloud-based 3D printing service allocation models for mass customization. Int. J. Adv. Manuf. Technol. 2023, 126, 2129–2145. [Google Scholar] [CrossRef]
- Rimmer, M. Automating Fab Cities: 3D Printing and Urban Renewal. In Automating Cities: Design, Construction, Operation and Future Impact; Wang, B.T., Wang, C.M., Eds.; Springer: Singapore, 2021; pp. 255–272. [Google Scholar]
- Saad Alotaibi, B.; Ibrahim Shema, A.; Umar Ibrahim, A.; Awad Abuhussain, M.; Abdulmalik, H.; Aminu Dodo, Y.; Atakara, C. Assimilation of 3D printing, Artificial Intelligence (AI) and Internet of Things (IoT) for the construction of eco-friendly intelligent homes: An explorative review. Heliyon 2024, 10, e36846. [Google Scholar] [CrossRef] [PubMed]
- Alavi, A.H.; Feng, M.; Jiao, P.; Sharif-Khodaei, Z. The Rise of Smart Cities: Advanced Structural Sensing and Monitoring Systems; Butterworth-Heinemann: Oxford, UK, 2022. [Google Scholar]
- Mohamed, A.S.Y. 3D Printing for Smart Urbanism: Towards City Livability. In Research and Innovation Forum 2023; Visvizi, A., Troisi, O., Corvello, V., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 205–217. [Google Scholar]
- de Souza, E.A.; Borges, P.H.R.; Stengel, T.; Nematollahi, B.; Bos, F.P. 3D printed sustainable low-cost materials for construction of affordable social housing in Brazil: Potential, challenges, and research needs. J. Build. Eng. 2024, 87, 108985. [Google Scholar] [CrossRef]
- Prashar, G.; Vasudev, H.; Bhuddhi, D. Additive manufacturing: Expanding 3D printing horizon in industry 4.0. Int. J. Interact. Des. Manuf. 2023, 17, 2221–2235. [Google Scholar] [CrossRef]
- Mehrpouya, M.; Dehghanghadikolaei, A.; Fotovvati, B.; Vosooghnia, A.; Emamian, S.S.; Gisario, A. The potential of additive manufacturing in the smart factory industrial 4.0: A review. Appl. Sci. 2019, 9, 3865. [Google Scholar] [CrossRef]
- Nielsen, K.; Brunoe, T.D.; Jensen, K.N.; Andersen, A.-L. Utilization of Mass Customization in Construction and Building Industry. In Managing Complexity; Bellemare, J., Carrier, S., Nielsen, K., Piller, F.T., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 115–125. [Google Scholar]
- Placino, P.; Rugkhapan, N.T. Making visible concrete’s shadow places: Mixing environmental concerns and social inequalities into building materials. Environ. Urban. 2024, 36, 195–213. [Google Scholar] [CrossRef]
- Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in smart cities: A survey of technologies, practices and challenges. Smart Cities 2021, 4, 429–475. [Google Scholar] [CrossRef]
- Kumar, A. A novel framework for waste management in smart city transformation with industry 4.0 technologies. Res. Glob. 2024, 9, 100234. [Google Scholar] [CrossRef]
- Goswami, L.; Singh, D. A Review on smart city using IOT. Int. J. Innov. Res. Comput. Sci. Technol. 2022, 10, 88–91. [Google Scholar] [CrossRef]
- Demir, E.; Eyers, D.; Huang, Y. Competing through the last mile: Strategic 3D printing in a city logistics context. Comput. Oper. Res. 2021, 131, 105248. [Google Scholar] [CrossRef]
- Olsson, N.O.E.; Arica, E.; Woods, R.; Madrid, J.A. Industry 4.0 in a project context: Introducing 3D printing in construction projects. Proj. Leadersh. Soc. 2021, 2, 100033. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E.; Shi, A.; Yang, L.; Shirowzhan, S.; Edwards, D.J. Additive manufacturing applications for industry 4.0: A systematic critical review. Buildings 2020, 10, 231. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Shukla, V.; Islam, N.; Manghat, S. Construction industry 4.0 and sustainability: An enabling framework. IEEE Trans. Eng. Manag. 2021, 71, 1–19. [Google Scholar] [CrossRef]
- Tsaramirsis, G.; Kantaros, A.; Al-Darraji, I.; Piromalis, D.; Apostolopoulos, C.; Pavlopoulou, A.; Alrammal, M.; Ismail, Z.; Buhari, S.M.; Stojmenovic, M. A modern approach towards an industry 4.0 model: From driving technologies to management. J. Sens. 2022, 2022, 5023011. [Google Scholar] [CrossRef]
- Adel, A. The convergence of intelligent tutoring, robotics, and IoT in smart education for the transition from industry 4.0 to 5.0. Smart Cities 2024, 7, 325–369. [Google Scholar] [CrossRef]
- Su, M.; Song, Y. Printable smart materials and devices: Strategies and applications. Chem. Rev. 2021, 122, 5144–5164. [Google Scholar] [CrossRef]
- Prasittisopin, L.; Jiramarootapong, P.; Pongpaisanseree, K.; Snguanyat, C. Lean manufacturing and thermal enhancement of single-layer wall with an additive manufacturing (AM) structure. ZKG Int. 2019, 4, 64–74. [Google Scholar]
- Yan, D.; Wang, Z.; Zhang, Z. Stimuli-responsive crystalline smart materials: From rational design and fabrication to applications. Acc. Chem. Res. 2022, 55, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Sobczyk, M.; Wiesenhütter, S.; Noennig, J.R.; Wallmersperger, T. Smart materials in architecture for actuator and sensor applications: A review. J. Intell. Mater. Syst. Struct. 2022, 33, 379–399. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, Y.; Wang, C. Recent advances in self-actuation and self-sensing materials: State of the art and future perspectives. Talanta 2020, 212, 120808. [Google Scholar] [CrossRef]
- Xia, X.; Spadaccini, C.M.; Greer, J.R. Responsive materials architected in space and time. Nat. Rev. Mater. 2022, 7, 683–701. [Google Scholar] [CrossRef]
- Kwan, K.W.; Ngan, A.H.W. A high-performing, visible-light-driven actuating material responsive to ultralow light intensities. Adv. Mater. Technol. 2019, 4, 1900746. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Y.; Yang, G. Smart supply chain management in industry 4.0: The review, research agenda and strategies in North America. Ann. Oper. Res. 2023, 322, 1075–1117. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Soni, P.; Saeedi, A.; Shahverdi, M.; Dillenburger, B. 3D Printing and Shape Memory Alloys. In Proceedings of the 42nd Annual Conference of the Association for Computer Aided Design in Architecture, ACADIA 2022, Philadelphia, PA, USA, 27–29 October 2022; pp. 76–89. [Google Scholar]
- Nicolay, P.; Schlögl, S.; Thaler, S.M.; Humbert, C.; Filipitsch, B. Smart Materials for Green (er) Cities, a Short Review. Appl. Sci. 2023, 13, 9289. [Google Scholar] [CrossRef]
- Srivastava, R.; Alsamhi, S.H.; Murray, N.; Devine, D. Shape memory alloy-based wearables: A review, and conceptual frameworks on HCI and HRI in Industry 4.0. Sensors 2022, 22, 6802. [Google Scholar] [CrossRef]
- Niazy, D.; Ashraf, M.; Bodaghi, M.; Zolfagharian, A. Resilient city perspective: 4D printing in art, architecture and construction. Mater. Today Sustain. 2024, 26, 100708. [Google Scholar] [CrossRef]
- Chatterjee, S.; Xu, J.; Huynh, T.; Abhishek, K.; Kumari, S.; Behera, A. Performance of smart alloys in manufacturing processes during subtractive and additive Manufacturing: A short review on SMA and metal alloys. In Smart 3D Nanoprinting; CRC Press: Boca Raton, FL, USA, 2022; pp. 267–280. [Google Scholar]
- Pecunia, V.; Occhipinti, L.G.; Hoye, R.L. Emerging indoor photovoltaic technologies for sustainable internet of things. Adv. Energy Mater. 2021, 11, 2100698. [Google Scholar] [CrossRef]
- Don Chua, W.F.; Lim, C.L.; Koh, Y.Y.; Kok, C.L. A novel IoT photovoltaic-powered water irrigation control and monitoring system for sustainable city farming. Electronics 2024, 13, 676. [Google Scholar] [CrossRef]
- Maraveas, C.; Loukatos, D.; Bartzanas, T.; Arvanitis, K.G.; Uijterwaal, J.F. Smart and solar greenhouse covers: Recent developments and future perspectives. Front. Energy Res. 2021, 9, 783587. [Google Scholar] [CrossRef]
- Liu, L.; Guo, X.; Lee, C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021, 88, 106304. [Google Scholar] [CrossRef]
- Choudhary, P.; Bhargava, L.; Suhag, A.K.; Choudhary, M.; Singh, S. An era of internet of things leads to smart cities initiatives towards urbanization. In Digital Cities Roadmap: IoT-Based Architecture and Sustainable Buildings; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 319–350. [Google Scholar]
- Deng, Z.; Li, W.; Dong, W.; Sun, Z.; Kodikara, J.; Sheng, D. Multifunctional asphalt concrete pavement toward smart transport infrastructure: Design, performance and perspective. Compos. Part B Eng. 2023, 265, 110937. [Google Scholar] [CrossRef]
- Andreu, A.; Lee, H.; Kang, J.; Yoon, Y.J. Self-healing materials for 3D printing. Adv. Funct. Mater. 2024, 34, 2315046. [Google Scholar] [CrossRef]
- Ryan, K.R.; Down, M.P.; Banks, C.E. Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chem. Eng. J. 2021, 403, 126162. [Google Scholar] [CrossRef]
- Miao, J.-T.; Ge, M.; Wu, Y.; Peng, S.; Zheng, L.; Chou, T.Y.; Wu, L. 3D printing of sacrificial thermosetting mold for building near-infrared irradiation induced self-healable 3D smart structures. Chem. Eng. J. 2022, 427, 131580. [Google Scholar] [CrossRef]
- Szczucka-Lasota, B.; Węgrzyn, T.; Silva, A.P.; Jurek, A. AHSS—Construction material used in smart cities. Smart Cities 2023, 6, 1132–1151. [Google Scholar] [CrossRef]
- Abedi, M.; Al-Jabri, K.; Han, B.; Fangueiro, R.; Lourenço, P.B.; Correia, A.G. Advancing infrastructure resilience: A polymeric composite reinforcement grid with self-sensing and self-heating capabilities. Constr. Build. Mater. 2024, 435, 136730. [Google Scholar] [CrossRef]
- Chen, G.; Wang, K.; Yang, J.; Huang, J.; Chen, Z.; Zheng, J.; Wang, J.; Yang, H.; Li, S.; Miao, Y. Printable thermochromic hydrogel-based smart window for all-weather building temperature regulation in diverse climates. Adv. Mater. 2023, 35, 2211716. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Y.; Chen, Y.; Fu, J. Energy efficient thermochromic smart windows based on polymers and metal oxides. J. Polym. Sci. 2024, 62, 229–240. [Google Scholar] [CrossRef]
- Wang, D.; Chen, G.; Fu, J. Multifunctional thermochromic smart windows for building energy saving. J. Mater. Chem. A 2024, 12, 12960–12982. [Google Scholar] [CrossRef]
- Supian, A.; Asyraf, M.; Syamsir, A.; Najeeb, M.; Alhayek, A.; Al-Dala’ien, R.N.; Manar, G.; Atiqah, A. Thermochromic polymer nanocomposites for the heat detection system: Recent progress on properties, applications, and challenges. Polymers 2024, 16, 1545. [Google Scholar] [CrossRef]
- Jiang, C.; He, L.; Xuan, Q.; Liao, Y.; Dai, J.-G.; Lei, D. Phase-change VO2-based thermochromic smart windows. Light: Sci. Appl. 2024, 13, 255. [Google Scholar] [CrossRef]
- Sekhar, M.C.; Veena, E.; Kumar, N.S.; Naidu, K.C.B.; Mallikarjuna, A.; Basha, D.B. A review on piezoelectric materials and their applications. Cryst. Res. Technol. 2023, 58, 2200130. [Google Scholar] [CrossRef]
- Yuan, X.; Mai, Z.; Li, Z.; Yu, Z.; Ci, P.; Dong, S. A 3D-printing approach toward flexible piezoelectronics with function diversity. Mater. Today 2023, 69, 160–192. [Google Scholar] [CrossRef]
- Pawar, O.; Lim, S. 3D-Printed piezoelectric nanogenerator with aligned graphitic carbon nitrate nanosheets for enhancing piezoelectric performance. J. Colloid Interface Sci. 2024, 654, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Li, H.; Liu, S.; Xiao, Z.; Yuan, X.; Zhai, D.; Zhou, K.; Bowen, C.R.; Zhang, Y.; Zhang, D. 3D-printed flexible PVDF-TrFE composites with aligned BCZT nanowires and interdigital electrodes for piezoelectric nanogenerator applications. ACS Appl. Polym. Mater. 2023, 5, 4879–4888. [Google Scholar] [CrossRef]
- Li, T.; Lee, P.S. Piezoelectric energy harvesting technology: From materials, structures, to applications. Small Struct. 2022, 3, 2100128. [Google Scholar] [CrossRef]
- Huang, M.; Zhu, M.; Feng, X.; Zhang, Z.; Tang, T.; Guo, X.; Chen, T.; Liu, H.; Sun, L.; Lee, C. Intelligent cubic-designed piezoelectric node (iCUPE) with simultaneous sensing and energy harvesting ability toward self-sustained artificial intelligence of things (AIoT). ACS Nano 2023, 17, 6435–6451. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, C. IoT applications powered by piezoelectric vibration energy harvesting device. In Information and Software Technologies; Springer: Cham, Switzerland, 2022; pp. 171–182. [Google Scholar]
- Tuloup, C.; Harizi, W.; Aboura, Z.; Meyer, Y. Integration of piezoelectric transducers (PZT and PVDF) within polymer-matrix composites for structural health monitoring applications: New success and challenges. Int. J. Smart Nano Mater. 2020, 11, 343–369. [Google Scholar] [CrossRef]
- Pu, W.; Wei, F.; Yao, L.; Xie, S. A review of humidity-driven actuator: Toward high response speed and practical applications. J. Mater. Sci. 2022, 57, 12202–12235. [Google Scholar] [CrossRef]
- Choi, A.H.; Ben-Nissan, B. Hydrogel for Biomedical Applications: 3D/4D Printing, Self-Healing, Microrobots, and Nanogenerators; Springer Nature: Singapore, 2024. [Google Scholar]
- Kuang, X.; Chen, K.; Dunn, C.K.; Wu, J.; Li, V.C.; Qi, H.J. 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing. ACS Appl. Mater. Interfaces 2018, 10, 7381–7388. [Google Scholar] [CrossRef]
- Lu, B.; Li, H.; Wong, T.N.; Qian, S. Development of a functional cementitious mixture with expanded graphite for automated spray construction. J. Mater. Civ. Eng. 2023, 35, 04023226. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Han, B.; Han, B.; Yu, X.; Zeng, S.; Ou, J. Intelligent concrete with self-x capabilities for smart cities. J. Smart Cities 2019, 2, 1–39. [Google Scholar] [CrossRef]
- Lawongkerd, J.; Vichai, K.; Thamniap, B.; Prasittisopin, L.; Saensuk, O.; Keawsawasvong, S. A study of thermoelectric energy harvesting on asphalt concrete pavement. Transp. Infrastruct. Geotechnol. 2024, 11, 1448–1461. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, H.; Yang, X.; Tan, Q.; Chen, Y. Fabrication and performance evaluation of high-performance SBS-modified asphalt through secondary modification with aminated graphene oxide. J. Mater. Civ. Eng. 2024, 36, 04024417. [Google Scholar] [CrossRef]
- Win, T.T.; Prasittisopin, L.; Jongvivatsakul, P.; Likitlersuang, S. Investigating the synergistic effect of graphene nanoplatelets and fly ash on the mechanical properties and microstructure of calcium aluminate cement composites. J. Build. Eng. 2023, 78, 107710. [Google Scholar] [CrossRef]
- Salah, H.A.; Mutalib, A.A.; Kaish, A.; Syamsir, A.; Algaifi, H.A. Development of ultra-high-performance silica fume-based mortar incorporating graphene nanoplatelets for 3-dimensional concrete printing application. Buildings 2023, 13, 1949. [Google Scholar] [CrossRef]
- Schulte, J.; Jiang, Z.; Sevim, O.; Ozbulut, O.E. Graphene-reinforced cement composites for smart infrastructure systems. In Rise Smart Cities; Butterworth-Heinemann: Oxford, UK, 2022; pp. 79–114. [Google Scholar]
- Jiang, X.; Lu, D.; Yin, B.; Leng, Z. Advancing carbon nanomaterials-engineered self-sensing cement composites for structural health monitoring: A state-of-the-art review. J. Build. Eng. 2024, 87, 109129. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Birgin, H.B.; Ubertini, F. Advanced monitoring of structures and infrastructures through smart composite sensors and systems. In Civil Structural Health Monitoring; Springer: Cham, Switzerland, 2021; pp. 485–498. [Google Scholar]
- Win, T.T.; Raengthon, N.; Prasittisopin, L. Advanced cement composites: Investigating the role of graphene quantum dots in improving thermal and mechanical performance. J. Build. Eng. 2024, 96, 110556. [Google Scholar] [CrossRef]
- Win, T.T.; Prasittisopin, L.; Nganglumpoon, R.; Pinthong, P.; Watmanee, S.; Tolek, W.; Panpranot, J. Chemo-physical mechanisms of high-strength cement composites with suprastructure of graphene quantum dots. Clean. Mater. 2024, 11, 100229. [Google Scholar] [CrossRef]
- Raj, A.; Yamkasikorn, P.; Wangtawesap, R.; Win, T.T.; Ngamkhanong, C.; Jongvivatsakul, P.; Prasittisopin, L.; Panpranot, J.; Kaewunruen, S. Effect of Graphene Quantum Dots (GQDs) on the mechanical, dynamic, and durability properties of concrete. Constr. Build. Mater. 2024, 441, 137597. [Google Scholar] [CrossRef]
- Win, T.T.; Prasittisopin, L.; Nganglumpoon, R.; Pinthong, P.; Watmanee, S.; Tolek, W.; Panpranot, J. Innovative GQDs and supra-GQDs assemblies for developing high strength and conductive cement composites. Constr. Build. Mater. 2024, 421, 135693. [Google Scholar] [CrossRef]
- Ismail, K.A.; Lino, F.A.; Henríquez, J.R.; Teggar, M.; Laouer, A.; Arici, M.; Benhorma, A.; Rodríguez, D. Enhancement techniques for the reduction of heating and cooling loads in buildings: A review. J. Energy Power Technol. 2023, 5, 031. [Google Scholar] [CrossRef]
- Block, A.B.; Palou, J.E.; Courtant, M.; Virtuani, A.; Cattaneo, G.; Roten, M.; Li, H.; Despeisse, M.; Hessler-Wyser, A.; Desai, U. Colouring solutions for building integrated photovoltaic modules: A review. Energy Build. 2024, 314, 114253. [Google Scholar] [CrossRef]
- Sadakorn, W.; Tetiranont, S.; Prasittisopin, L.; Kaewunruen, S. Assessing thermal comfort in hot and humid (tropical) climates: Urban outdoor and semi-outdoor conditions in waiting areas of railway stations. Build. Environ. 2024, 267, 112240. [Google Scholar] [CrossRef]
- Del Pero, C.; Leonforte, F.; Aste, N. Building-integrated photovoltaics in existing buildings: A novel PV roofing system. Buildings 2024, 14, 2270. [Google Scholar] [CrossRef]
- Ciampi, G.; Spanodimitriou, Y.; Scorpio, M.; Rosato, A.; Sibilio, S. Energy performances assessment of extruded and 3d printed polymers integrated into building envelopes for a south Italian case study. Buildings 2021, 11, 141. [Google Scholar] [CrossRef]
- Raja, S.; Mustafa, M.A.; Ghadir, G.K.; Al-Tmimi, H.M.; Alani, Z.K.; Rusho, M.A.; Rajeswari, N. Unlocking the potential of polymer 3D printed electronics: Challenges and solutions. Appl. Chem. Eng. 2024, 7, 3877. [Google Scholar] [CrossRef]
- Nguyen, P.Q.; Courchesne, N.M.D.; Duraj-Thatte, A.; Praveschotinunt, P.; Joshi, N.S. Engineered living materials: Prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 2018, 30, 1704847. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering. Comput. Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Son, J.-h.; Kim, H.; Choi, Y.; Lee, H. 3D printed energy devices: Generation, conversion, and storage. Microsyst. Nanoeng. 2024, 10, 93. [Google Scholar] [CrossRef]
- Li, H.; Liang, J. Recent development of printed micro-supercapacitors: Printable materials, printing technologies, and perspectives. Adv. Mater. 2020, 32, 1805864. [Google Scholar] [CrossRef]
- Trivedi, D.; Rahn, C.D.; Kier, W.M.; Walker, I.D. Soft robotics: Biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 2008, 5, 99–117. [Google Scholar] [CrossRef]
- Seong, M.; Sun, K.; Kim, S.; Kwon, H.; Lee, S.W.; Veerla, S.C.; Kang, D.K.; Kim, J.; Kondaveeti, S.; Tawfik, S.M.; et al. Multifunctional Magnetic Muscles for Soft Robotics. Nat. Commun. 2024, 15, 7929. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, Y.; Zhu, B.; Chen, Q.; Wang, L.; Zhao, Y.; Sun, D.; Zheng, J.; Wu, D. A magnetic soft robot with multimodal sensing capability by multimaterial direct ink writing. Addit. Manuf. 2023, 61, 103320. [Google Scholar] [CrossRef]
- Sun, J.; Tighe, B.; Liu, Y.; Zhao, J. Twisted-and-coiled actuators with free strokes enable soft robots with programmable motions. Soft Robot. 2021, 8, 213–225. [Google Scholar] [CrossRef]
- Zhao, R.; Dai, H.; Yao, H. Liquid-metal magnetic soft robot with reprogrammable magnetization and stiffness. IEEE Robot. Autom. Lett. 2022, 7, 4535–4541. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Quan, J.; Li, L.; Zhang, G.; Zhou, D. Progress, challenges, and prospects of soft robotics for space applications. Adv. Intell. Syst. 2023, 5, 2200071. [Google Scholar] [CrossRef]
- Liao, J.; Majidi, C.; Sitti, M. Liquid metal actuators: A comparative analysis of surface tension controlled actuation. Adv. Mater. 2024, 36, 2300560. [Google Scholar] [CrossRef] [PubMed]
- Wallin, T.J.; Pikul, J.; Shepherd, R.F. 3D printing of soft robotic systems. Nat. Rev. Mater. 2018, 3, 84–100. [Google Scholar] [CrossRef]
- Sadeghi, A.; Mondini, A.; Mazzolai, B. Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Robot. 2017, 4, 211–223. [Google Scholar] [CrossRef]
- Bier, H.; Hidding, A.; Latour, M.; Oskam, P.; Alavi, H.; Külekci, A. Design-to-robotic-production and-operation for activating bio-cyber-physical environments. In Disruptive Technologies: The Convergence of New Paradigms in Architecture; Springer: Cham, Switzerland, 2023; pp. 45–57. [Google Scholar]
- Sadeghi, A.; Del Dottore, E.; Mondini, A.; Mazzolai, B. Passive morphological adaptation for obstacle avoidance in a self-growing robot produced by additive manufacturing. Soft Robot. 2020, 7, 85–94. [Google Scholar] [CrossRef]
- Fernandez, S.V.; Sadat, D.; Tasnim, F.; Acosta, D.; Schwendeman, L.; Shahsavari, S.; Dagdeviren, C. Ubiquitous conformable systems for imperceptible computing. Foresight 2022, 24, 75–98. [Google Scholar] [CrossRef]
- Block, A.E. HuggieBot: An Interactive Hugging Robot with Visual and Haptic Perception. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2021. [Google Scholar]
- Hang, K.; Lyu, X.; Song, H.; Stork, J.A.; Dollar, A.M.; Kragic, D.; Zhang, F. Perching and resting—A paradigm for UAV maneuvering with modularized landing gears. Sci. Robot. 2019, 4, eaau6637. [Google Scholar] [CrossRef] [PubMed]
- Tawk, C.; Zhou, H.; Sariyildiz, E.; Panhuis, M.I.H.; Spinks, G.M.; Alici, G. Design, modeling, and control of a 3D printed monolithic soft robotic finger with embedded pneumatic sensing chambers. IEEE/ASME Trans. Mechatron. 2020, 26, 876–887. [Google Scholar] [CrossRef]
- Tawk, C.; Sariyildiz, E.; Alici, G. Force control of a 3D printed soft gripper with built-in pneumatic touch sensing chambers. Soft Robot. 2022, 9, 970–980. [Google Scholar] [CrossRef]
- Roy, M.; Roy, A. The rise of interdisciplinarity in engineering education in the era of industry 4.0: Implications for management practice. IEEE Eng. Manag. Rev. 2021, 49, 56–70. [Google Scholar] [CrossRef]
- Khanna, J.; AL-Rawi, M.; Hartley, C. Development of innovative cross-disciplinary engineering showcase. In Proceedings of the MaDE2020: Synergies in New Zealand Manufacturing, Design and Entrepreneurship, Auckland, New Zealand, 7–8 December 2020. [Google Scholar]
- Treutler, K.; Wesling, V. The current state of research of wire arc additive manufacturing (WAAM): A review. Appl. Sci. 2021, 11, 8619. [Google Scholar] [CrossRef]
- Wei, H.L.; Bhadeshia, H.K.D.H.; David, S.A.; DebRoy, T. Harnessing the scientific synergy of welding and additive manufacturing. Sci. Technol. Weld. Join. 2019, 24, 361–366. [Google Scholar] [CrossRef]
- Dilibal, S.; Nohut, S.; Kurtoglu, C.; Owusu-Danquah, J. Data-driven generative design integrated with hybrid additive subtractive manufacturing (HASM) for smart cities. In Data-Driven Mining, Learning and Analytics for Secured Smart Cities: Trends and Advances; Springer: Cham, Switzerland, 2021; pp. 205–228. [Google Scholar]
- Casas-Bocanegra, D.; Gomez-Vargas, D.; Pinto-Bernal, M.J.; Maldonado, J.; Munera, M.; Villa-Moreno, A.; Stoelen, M.F.; Belpaeme, T.; Cifuentes, C.A. An open-source social robot based on compliant soft robotics for therapy with children with ASD. Actuators 2020, 9, 91. [Google Scholar] [CrossRef]
- Xi, W. Enhancing awareness of urban greenbelts through the integration of soft robots and cultural storytelling: A more-than-human design approach. Master’s Thesis, Leiden University, Leiden, The Netherlands, 2023. [Google Scholar]
- Xia, C.; Pan, Z.; Polden, J.; Li, H.; Xu, Y.; Chen, S.; Zhang, Y. A review on wire arc additive manufacturing: Monitoring, control and a framework of automated system. J. Manuf. Syst. 2020, 57, 31–45. [Google Scholar] [CrossRef]
- Fidan, I.; Huseynov, O.; Ali, M.A.; Alkunte, S.; Rajeshirke, M.; Gupta, A.; Hasanov, S.; Tantawi, K.; Yasa, E.; Yilmaz, O. Recent inventions in additive manufacturing: Holistic review. Inventions 2023, 8, 103. [Google Scholar] [CrossRef]
- Costanzi, C.B.; Waldschmitt, B.; Knaack, U.; Lange, J. Transforming the construction industry through wire arc additive manufacturing. In Coding Architecture: Designing Toolkits, Workflows, Industry; Springer: Cham, Switzerland, 2023; pp. 213–238. [Google Scholar]
- Chadha, K.; Dubor, A.; Cabay, E.; Tayoun, Y.; Naldoni, L.; Moretti, M. Additive manufacturing for the circular built environment: Towards circular construction with earth-based materials. In A Circular Built Environment in the Digital Age; Springer International Publishing: Cham, Switzerland, 2024; pp. 111–128. [Google Scholar]
- Dörrie, R.; Laghi, V.; Arrè, L.; Kienbaum, G.; Babovic, N.; Hack, N.; Kloft, H. Combined additive manufacturing techniques for adaptive coastline protection structures. Buildings 2022, 12, 1806. [Google Scholar] [CrossRef]
- Fu, H.; Kaewunruen, S. State-of-the-art review on additive manufacturing technology in railway infrastructure systems. J. Compos. Sci. 2022, 6, 7. [Google Scholar] [CrossRef]
- Rane, N.; Choudhary, S.; Rane, J. 4D/5D/6D Printing Technology in the Architecture, Engineering, and Construction (AEC) Industry: Applications, Challenges, and Future Advancements; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Khanpara, P.; Tanwar, S. Additive manufacturing: Concepts and technologies. In A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development; Springer: Cham, Switzerland, 2020; pp. 171–185. [Google Scholar]
- Laghi, V.; Palermo, M.; Gasparini, G.; Trombetti, T. Wire and arc additive manufacturing: Wire and arc additive manufacturing technology: A research perspective. In Additive Manufacturing for Construction; Emerald Group Publishing Ltd.: Leeds, UK, 2023; pp. 141–159. [Google Scholar]
- Nyamuchiwa, K.; Palad, R.; Panlican, J.; Tian, Y.; Aranas, C., Jr. Recent progress in hybrid additive manufacturing of metallic materials. Appl. Sci. 2023, 13, 8383. [Google Scholar] [CrossRef]
- Helm, J.M.; Swiergosz, A.M.; Haeberle, H.S.; Karnuta, J.M.; Schaffer, J.L.; Krebs, V.E.; Spitzer, A.I.; Ramkumar, P.N. Machine learning and artificial intelligence: Definitions, applications, and future directions. Curr. Rev. Musculoskelet. Med. 2020, 13, 69–76. [Google Scholar] [CrossRef]
- Mahesh, B. Machine learning algorithms-a review. Int. J. Sci. Res. 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Mondal, K.; Martinez, O.; Jain, P. Advanced manufacturing and digital twin technology for nuclear energy. Front. Energy Res. 2024, 12, 1339836. [Google Scholar] [CrossRef]
- Brenner, M.; Langenberg, S.; Angermann, K.; Meier, H.-R. High-Tech Heritage:(Im) Permanence of Innovative Architecture; Birkhäuser: Basel, Switzerland, 2024. [Google Scholar]
- Nguyen, P.D.; Nguyen, T.Q.; Tao, Q.; Vogel, F.; Nguyen-Xuan, H. A data-driven machine learning approach for the 3D printing process optimisation. Virtual Phys. Prototyp. 2022, 17, 768–786. [Google Scholar] [CrossRef]
- Chaturvedi, M.; Vendan, S.A. Data-Driven Models in Machine Learning: An Enabler of Smart Manufacturing. In Big Data Analytics in Smart Manufacturing: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2022; pp. 35–68. [Google Scholar]
- Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Autom. Constr. 2022, 141, 104440. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, K.; Demoly, F.; Zhao, R.R.; Qi, H.J. Perspective: Machine learning in design for 3D/4D printing. J. Appl. Mech. 2024, 91, 030801. [Google Scholar] [CrossRef]
- Chigilipalli, B.K.; Karri, T.; Chetti, S.N.; Bhiogade, G.; Kottala, R.K.; Cheepu, M. A review on recent trends and applications of IoT in additive manufacturing. Appl. Syst. Innov. 2023, 6, 50. [Google Scholar] [CrossRef]
- Talaat, F.M.; Hassan, E. Artificial intelligence in 3D printing. In Enabling Machine Learning Applications in Data Science; Springer: Singapore, 2021; pp. 77–88. [Google Scholar]
- Prasittisopin, L.; Tuvayanond, W. Machine Learning for Strength Prediction of Ready-Mix Concretes Containing Chemical and Mineral Admixtures and Cured at Different Temperatures. In Proceedings of the 6th International Conference on Civil Engineering and Architecture, Bali, Indonesia, 16–18 December 2023; Springer: Singapore, 2023; pp. 242–249. [Google Scholar]
- Tuvayanond, W.; Kamchoom, V.; Prasittisopin, L. Efficient machine learning for strength prediction of ready-mix concrete production (prolonged mixing). Constr. Innov. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Mehta, P.; Mujawar, M.; LaFrance, S.; Bernadin, S.; Ewing, D.; Bhansali, S. Sensor-based and computational methods for error detection and correction in 3D printing. ECS Sens. Plus 2024, 3, 030602. [Google Scholar] [CrossRef]
- Pech, M.; Vrchota, J.; Bednář, J. Predictive maintenance and intelligent sensors in smart factory. Sensors 2021, 21, 1470. [Google Scholar] [CrossRef] [PubMed]
- Prasittisopin, L.; Trejo, D. Performance characteristics of blended cementitious systems incorporating chemically transformed rice husk Ash. Adv. Civ. Eng. Mater. 2017, 6, 17–35. [Google Scholar] [CrossRef]
- Sereewatthanawut, I.; Panwisawas, C.; Ngamkhanong, C.; Prasittisopin, L. Effects of extended mixing processes on fresh, hardened and durable properties of cement systems incorporating fly ash. Sci. Rep. 2023, 13, 6091. [Google Scholar] [CrossRef] [PubMed]
- Win, T.T.; Wattanapornprom, R.; Prasittisopin, L.; Pansuk, W.; Pheinsusom, P. Investigation of fineness and calcium-oxide content in fly ash from ASEAN region on properties and durability of cement–fly ash system. Eng. J. 2022, 26, 77–90. [Google Scholar] [CrossRef]
- Sampedro, G.A.R.; Putra, M.A.P.; Abisado, M. 3D-AmplifAI: An ensemble machine learning approach to digital twin fault monitoring for additive manufacturing in smart factories. IEEE Access 2023, 11, 64128–64140. [Google Scholar] [CrossRef]
- Suvarna, M.; Büth, L.; Hejny, J.; Mennenga, M.; Li, J.; Ng, Y.T.; Herrmann, C.; Wang, X. Smart manufacturing for smart cities—Overview, insights, and future directions. Adv. Intell. Syst. 2020, 2, 2000043. [Google Scholar] [CrossRef]
- Jena, O.P.; Bhushan, B.; Kose, U. Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Zain, M.; Keawsawasvong, S.; Thongchom, C.; Sereewatthanawut, I.; Usman, M.; Prasittisopin, L. Establishing efficacy of machine learning techniques for vulnerability information of tubular buildings. Eng. Sci. 2023, 27, 1008. [Google Scholar] [CrossRef]
- Goh, G.D.; Sing, S.L.; Yeong, W.Y. A review on machine learning in 3D printing: Applications, potential, and challenges. Artif. Intell. Rev. 2021, 54, 63–94. [Google Scholar] [CrossRef]
- Gharehbaghi, V.R.; Noroozinejad Farsangi, E.; Noori, M.; Yang, T.Y.; Li, S.; Nguyen, A.; Málaga-Chuquitaype, C.; Gardoni, P.; Mirjalili, S. A critical review on structural health monitoring: Definitions, methods, and perspectives. Arch. Comput. Methods Eng. 2022, 29, 2209–2235. [Google Scholar] [CrossRef]
- Ditommaso, R.; Ponzo, F.C. Identifying Damage in Structures: Definition of Thresholds to Minimize False Alarms in SHM Systems. Buildings 2024, 14, 821. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P.; Adeli, H. Signal processing techniques for vibration-based health monitoring of smart structures. Arch. Comput. Methods Eng. 2016, 23, 1–15. [Google Scholar] [CrossRef]
- Zinno, R.; Artese, S.; Clausi, G.; Magarò, F.; Meduri, S.; Miceli, A.; Venneri, A. Structural health monitoring (SHM). In The Internet of Things for Smart Urban Ecosystems; Springer: Cham, Switzerland, 2019; pp. 225–249. [Google Scholar]
- Guerrieri, A.; Loscri, V.; Rovella, A.; Fortino, G. Management of Cyber Physical Objects in the Future Internet of Things; Springer Nature: Cham, Switzerland, 2016; pp. 31–50. [Google Scholar]
- Figueiredo, E.; Brownjohn, J. Three decades of statistical pattern recognition paradigm for SHM of bridges. Struct. Health Monit. 2022, 21, 3018–3054. [Google Scholar] [CrossRef]
- Vijayan, D.S.; Sivasuriyan, A.; Devarajan, P.; Krejsa, M.; Chalecki, M.; Żółtowski, M.; Kozarzewska, A.; Koda, E. Development of intelligent technologies in SHM on the innovative diagnosis in civil engineering—A comprehensive review. Buildings 2023, 13, 1903. [Google Scholar] [CrossRef]
- Mishra, M.; Lourenço, P.B.; Ramana, G.V. Structural health monitoring of civil engineering structures by using the internet of things: A review. J. Build. Eng. 2022, 48, 103954. [Google Scholar] [CrossRef]
- Zinno, R.; Haghshenas, S.S.; Guido, G.; Rashvand, K.; Vitale, A.; Sarhadi, A. The state of the art of artificial intelligence approaches and new technologies in structural health monitoring of bridges. Appl. Sci. 2022, 13, 97. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, X.; Meves, J.; Billings, C.; Liu, Y. 3D printed and embedded strain sensors in structural composites for loading monitoring and damage diagnostics. J. Compos. Sci. 2023, 7, 437. [Google Scholar] [CrossRef]
- Mousavi, S.; Blanloeuil, P.; Vinoth, T.; Howard, D.; Wang, C.H. A 3D Printed Constriction-Resistive Sensor for the Detection of Ultrasonic Waves; Materials Research Forum LLC.: Millersville, PA, USA, 2021; pp. 272–277. [Google Scholar]
- Kim, T.-H.; Moeinnia, H.; Kim, W.S. 3D printed vorticella-kirigami inspired sensors for structural health monitoring in internet-of-things. Mater. Des. 2023, 234, 112332. [Google Scholar] [CrossRef]
- Fitzpatrick, D.; Billings, C.; Liu, Y. In Lightweight Composites with 3D Printed Sensors for Real-Time Damage Detection. In Proceedings of the ASME 2023 Aerospace Structures, Structural Dynamics, and Materials Conference, San Diego, CA, USA, 19–21 June 2023; American Society of Mechanical Engineers: New York, NY, USA, 2023; p. V001T01A005. [Google Scholar]
- Zain, M.; Dackermann, U.; Prasittisopin, L. Machine learning (ML) algorithms for seismic vulnerability assessment of school buildings in high-intensity seismic zones. Structures 2024, 70, 107639. [Google Scholar] [CrossRef]
- Zain, M.; Prasittisopin, L.; Mehmood, T.; Ngamkhanong, C.; Keawsawasvong, S.; Thongchom, C. A novel framework for effective structural vulnerability assessment of tubular structures using machine learning algorithms (GA and ANN) for hybrid simulations. Nonlinear Eng. 2024, 13, 20220365. [Google Scholar] [CrossRef]
- Zain, M.; Ngamkhanong, C.; Kang, T.H.K.; Usman, M.; Prasittisopin, L. Modal-based fragility analysis of high-rise tubular structures: A methodology for vulnerability assessment. Structures 2024, 63, 106289. [Google Scholar] [CrossRef]
- Hořejší, P.; Novikov, K.; Šimon, M. A smart factory in a Smart City: Virtual and augmented reality in a smart assembly line. IEEE Access 2020, 8, 94330–94340. [Google Scholar] [CrossRef]
- Li, S.; Chen, C.-L.; Loh, K.J. Laboratory evaluation of railroad crosslevel tilt sensing using electrical time domain reflectometry. Sensors 2020, 20, 4470. [Google Scholar] [CrossRef]
- EN 206-1:2000; Concrete-Part 1: Specification, Performance, Production and Conformity. British Standards Institution: London, UK, 2000.
- Levy, M.; Salvadori, M. Why Buildings Fall Down: How Structures Fail; WW Norton & Company: New York, NY, USA, 2002. [Google Scholar]
- Kaszynska, M.; Nowak, A.S. Effect of Material Quality on Life-Time Performance of Concrete Structures. In Life-Cycle Performance of Deteriorating Structures: Assessment, Design and Management; American Society of Civil Engineers: Reston, VA, USA, 2024; pp. 141–147. [Google Scholar]
- Yu, G.; Wang, Y.; Hu, M.; Shi, L.; Mao, Z.; Sugumaran, V. RIOMS: An intelligent system for operation and maintenance of urban roads using spatio-temporal data in smart cities. Future Gener. Comput. Syst. 2021, 115, 583–609. [Google Scholar] [CrossRef]
- Yamato, Y.; Fukumoto, Y.; Kumazaki, H. Proposal of real time predictive maintenance platform with 3D printer for business vehicles. Int. J. Inf. Electron. Eng. 2016, 6, 289–293. [Google Scholar] [CrossRef]
- Birtchnell, T. 3D printing and the changing logistics of cities. In Handbook of Urban Mobilities; Routledge: London, UK, 2020; pp. 348–356. [Google Scholar]
- Lipson, H.; Kurman, M. Fabricated: The New World of 3D Printing; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Bhanji, S.; Shotz, H.; Tadanki, S.; Miloudi, Y.; Warren, P. Advanced enterprise asset management systems: Improve predictive maintenance and asset performance by leveraging industry 4.0 and the internet of things (IoT). In Proceedings of the 2021 Joint Rail Conference, Virtual, 20–21 April 2021; American Society of Mechanical Engineers: New York, NY, USA, 2021; p. V001T12A002. [Google Scholar]
- Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Haq, M.I.U. 3D printing–a review of processes, materials and applications in industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42. [Google Scholar] [CrossRef]
- Arriola, J.B.; van Oudheusden, A.A.; Flipsen, B.; Faludi, J. 3D Printing for Repair Guide; TU Delft: Delft, The Netherlands, 2022; p. 48. [Google Scholar]
- Khan, M.; McNally, C. Recent developments on low carbon 3D printing concrete: Revolutionizing construction through innovative technology. Clean. Mater. 2024, 12, 100251. [Google Scholar] [CrossRef]
- Zaid, O.; El Ouni, M.H. Advancements in 3D printing of cementitious materials: A review of mineral additives, properties, and systematic developments. Constr. Build. Mater. 2024, 427, 136254. [Google Scholar] [CrossRef]
- Sereewatthanawut, I.; Pansuk, W.; Pheinsusom, P.; Prasittisopin, L. Chloride-induced corrosion of a galvanized steel-embedded calcium sulfoaluminate stucco system. J. Build. Eng. 2021, 44, 103376. [Google Scholar] [CrossRef]
- Perrot, A.; Jacquet, Y.; Caron, J.F.; Mesnil, R.; Ducoulombier, N.; De Bono, V.; Sanjayan, J.; Ramakrishnan, S.; Kloft, H.; Gosslar, J.; et al. Snapshot on 3D printing with alternative binders and materials: Earth, geopolymers, gypsum and low carbon concrete. Cem. Concr. Res. 2024, 185, 107651. [Google Scholar] [CrossRef]
- Kumar, V. Sustainable 3D Printing–Based Smart Solution for the Maintenance of Heritage Structures. In Sustainable Manufacturing; CRC Press: Boca Raton, FL, USA, 2024; pp. 13–30. [Google Scholar]
- Compare, M.; Baraldi, P.; Zio, E. Challenges to IoT-enabled predictive maintenance for industry 4.0. IEEE Internet Things J. 2019, 7, 4585–4597. [Google Scholar] [CrossRef]
- Sampedro, G.A.; Putra, M.A.P.; Lee, J.-M.; Kim, D.-S. Industrial internet of things-based fault mitigation for smart additive manufacturing using multi-flow BiLSTM. IEEE Access 2023, 11, 99130–99142. [Google Scholar] [CrossRef]
- Bibri, S.E.; Bibri, S.E. Data-driven smart sustainable cities: A conceptual framework for urban intelligence functions and related processes, systems, and sciences. In Advances in the Leading Paradigms of Urbanism and their Amalgamation: Compact Cities, Eco-Cities, and Data–Driven Smart Cities; Springer: Cham, Switzerland, 2020; pp. 143–173. [Google Scholar]
- Gkontzis, A.F.; Kotsiantis, S.; Feretzakis, G.; Verykios, V.S. Enhancing urban resilience: Smart city data analyses, forecasts, and digital twin techniques at the neighborhood level. Future Internet 2024, 16, 47. [Google Scholar] [CrossRef]
- Kumar, H.; Singh, M.K.; Gupta, M.; Madaan, J. Moving towards smart cities: Solutions that lead to the smart city transformation framework. Technol. Forecast. Soc. Change 2020, 153, 119281. [Google Scholar] [CrossRef]
- Bhagia, S.; Bornani, K.; Agrawal, R.; Satlewal, A.; Ďurkovič, J.; Lagaňa, R.; Bhagia, M.; Yoo, C.G.; Zhao, X.; Kunc, V. Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl. Mater. Today 2021, 24, 101078. [Google Scholar] [CrossRef]
- Luque-del-Castillo, F.-d.-P.; Ladrón-de-Guevara-Muñoz, M.C.; de-Cózar-Macías, Ó.D.; Castillo-Rueda, F.J.; Pérez-García, J.; Martínez-Torres, J.-L. Construction of a Recycled Plastic Filament Winder for 3D Printing. In Advances in Design Engineering IV; Manchado del Val, C., Suffo Pino, M., Miralbes Buil, R., Moreno Sánchez, D., Moreno Nieto, D., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 502–513. [Google Scholar]
- Tu, H.; Wei, Z.; Bahrami, A.; Kahla, N.B.; Ahmad, A.; Özkılıç, Y.O. Recent advancements and future trends in 3D printing concrete using waste materials. Dev. Built Environ. 2023, 16, 100187. [Google Scholar] [CrossRef]
- Trejo, D.; Prasittisopin, L. Chemical transformation of rice husk ash morphology. ACI Mater. J. 2015, 112, 358–392. [Google Scholar] [CrossRef]
- Krčma, M.; Škaroupka, D.; Vosynek, P.; Zikmund, T.; Kaiser, J.; Palousek, D. Use of polymer concrete for large-scale 3D printing. Rapid Prototyp. J. 2021, 27, 465–474. [Google Scholar] [CrossRef]
- Sereewatthanawut, I.; Prasittisopin, L. Effects of accelerating and retarding agents on nucleation and crystal growth of calcium aluminate cement. Open Ceram. 2022, 11, 100290. [Google Scholar] [CrossRef]
- Win, T.T.; Prasittisopin, L.; Jongvivatsakul, P.; Likitlersuang, S. Investigating the role of steel and polypropylene fibers for enhancing mechanical properties and microstructural performance in mitigating conversion effects in calcium aluminate cement. Constr. Build. Mater. 2024, 430, 136515. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.; Muñoz, M.A.; Vargas, A.; de Gutiérrez, R.M. Effects of incorporating bentonite, metakaolin, microsilica, and calcium carbonate on the rheological properties of portland cement-based 3D printing inks. Constr. Build. Mater. 2024, 445, 137857. [Google Scholar] [CrossRef]
- Trejo, D.; Prasittisopin, L. Effects of mixing variables on early-age characteristics of portland cement systems. J. Mater. in Civil Eng. 2016, 28, 04016094. [Google Scholar] [CrossRef]
- Lu, Y.; Xiao, J.; Li, Y. 3D printing recycled concrete incorporating plant fibres: A comprehensive review. Constr. Build. Mater. 2024, 425, 135951. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, R.; Ahuja, I.S. On 3D printing of electro-active PVDF-Graphene and Mn-doped ZnO nanoparticle-based composite as a self-healing repair solution for heritage structures. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2022, 236, 1141–1154. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, R.; Ahuja, I.S. Multi-material printing of PVDF composites: A customized solution for maintenance of heritage structures. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2023, 237, 554–564. [Google Scholar] [CrossRef]
- Wang, Z.; Luan, C.; Liao, G.; Yao, X.; Fu, J. Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure. Compos. Part B Eng. 2019, 176, 107215. [Google Scholar] [CrossRef]
- Zhang, P.; Arceneaux, D.J.; Liu, Z.; Nikaeen, P.; Khattab, A.; Li, G. A crack healable syntactic foam reinforced by 3D printed healing-agent based honeycomb. Compos. Part B Eng. 2018, 151, 25–34. [Google Scholar] [CrossRef]
- Luan, C.; Yao, X.; Zhang, C.; Fu, J.; Wang, B. Integrated self-monitoring and self-healing continuous carbon fiber reinforced thermoplastic structures using dual-material three-dimensional printing technology. Compos. Sci. Technol. 2020, 188, 107986. [Google Scholar] [CrossRef]
Topic | Year | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
[2] | [33] | [34] | [35] | [36] | [37] | [38] | [39] | [40] | [41] | [42] | [43] | [44] | [45] | [46] | [47] | [48] | [49] | [50] | [51] | [52] | [53] | [54] | [55] | [56] | [57] | [58] | [59] | [60] | [61] | [62] | [63] | [64] | [65] | [66] | [67] | [68] | [69] | [70] | [71] | [72] | [73] | [74] | [75] | [76] | [77] | [78] | [79] | [80] | [81] | [82] | [83] | [84] | [85] | [86] | [87] | [88] | [89] | [90] | [91] | [92] | [93,94,95] | |
Smart material | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ ✓ | |||||||||||||||||||||||||||||||||||||||||||||
Digital twin | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Smart manufacturing | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||||||||||||||||||||
Structural health monitoring | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Industry 4.0 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Machine learning | ✓ | ✓ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wire arc additive manufacturing | ✓ | ✓ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Soft robotic | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Artificial intelligence | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Repair | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasittisopin, L. How 3D Printing Technology Makes Cities Smarter: A Review, Thematic Analysis, and Perspectives. Smart Cities 2024, 7, 3458-3488. https://doi.org/10.3390/smartcities7060135
Prasittisopin L. How 3D Printing Technology Makes Cities Smarter: A Review, Thematic Analysis, and Perspectives. Smart Cities. 2024; 7(6):3458-3488. https://doi.org/10.3390/smartcities7060135
Chicago/Turabian StylePrasittisopin, Lapyote. 2024. "How 3D Printing Technology Makes Cities Smarter: A Review, Thematic Analysis, and Perspectives" Smart Cities 7, no. 6: 3458-3488. https://doi.org/10.3390/smartcities7060135
APA StylePrasittisopin, L. (2024). How 3D Printing Technology Makes Cities Smarter: A Review, Thematic Analysis, and Perspectives. Smart Cities, 7(6), 3458-3488. https://doi.org/10.3390/smartcities7060135