Estimating Carrot Gross Primary Production Using UAV-Based Multispectral Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Crop Management
2.2. Microclimate and EC System Measurements
NEE Partitioning
2.3. Multispectral Imagery
2.4. Spectral Indexes
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, C.; Niu, Z.; Gao, S. Gross Primary Production Estimation from MODIS Data with Vegetation Index and Photosynthetically Active Radiation in Maize. J. Geophys. Res. Atmos. 2010, 115, D12. [Google Scholar] [CrossRef]
- Pokhariyal, S.; Patel, N.R. Comparison of Empirical Remote-sensing Based Models for the Estimation of Gross Primary Productivity Using Eddy Covariance and Satellite Data over Agroecosystem. Int. Soc. Trop. Ecol. 2021, 62, 600–611. [Google Scholar] [CrossRef]
- Woodwell, G.M.; Whittaker, R.H. Primary Production in Terrestrial Ecosystems. Am. Zool. 1968, 8, 19–30. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Anav, A.; Friedlingstein, P.; Beer, C.; Ciais, P.; Harper, A.; Jones, C.; Murray-Tortarolo, G.; Papale, D.; Parazoo, N.C.; Peylin, P.; et al. Reviews of Geophysics Primary Production: A Review. Rev. Geophys. 2015, 53, 785–818. [Google Scholar] [CrossRef]
- Emmel, C.; D’Odorico, P.; Revill, A.; Hörtnagl, L.; Ammann, C.; Buchmann, N.; Eugster, W. Canopy Photosynthesis of Six Major Arable Crops Is Enhanced under Diffuse Light Due to Canopy Architecture. Glob. Chang. Biol. 2020, 26, 5164–5177. [Google Scholar] [CrossRef]
- Fu, Z.; Ciais, P.; Bastos, A.; Stoy, P.C.; Yang, H.; Green, J.K.; Wang, B.; Yu, K.; Huang, Y.; Knohl, A.; et al. Sensitivity of Gross Primary Productivity to Climatic Drivers during the Summer Drought of 2018 in Europe: Sensitivity of GPP to Climate Drivers. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190747. [Google Scholar] [CrossRef] [PubMed]
- Baldocchi, D.D. Assessing the Eddy Covariance Technique for Evaluating Carbon Dioxide Exchange Rates of Ecosystems: Past, Present and Future. Glob. Chang. Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef]
- Lees, K.J.; Quaife, T.; Artz, R.R.E.; Khomik, M.; Clark, J.M. Potential for Using Remote Sensing to Estimate Carbon Fluxes across Northern Peatlands—A Review. Sci. Total Environ. 2018, 615, 857–874. [Google Scholar] [CrossRef]
- Madugundu, R.; Al-Gaadi, K.A.; Tola, E.K.; Kayad, A.G.; Jha, C.S. Estimation of Gross Primary Production of Irrigated Maize Using Landsat-8 Imagery and Eddy Covariance Data. Saudi J. Biol. Sci. 2017, 24, 410–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeFries, R. Terrestrial Vegetation in the Coupled Human-Earth System: Contributions of Remote Sensing. Annu. Rev. Environ. Resour. 2008, 33, 369–390. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, L.; Liang, C.; Cui, N.; Gong, D.; Wang, Y.; Feng, Y.; Hu, X.; Zou, Q. Comparison of Satellite-Based Models for Estimating Gross Primary Productivity in Agroecosystems. Agric. For. Meteorol. 2021, 297, 108253. [Google Scholar] [CrossRef]
- Box, E.O.; Holben, B.N.; Kalb, V. Accuracy of the AVHRR Vegetation Index as a Predictor of Biomass, Primary Productivity and Net CO2 Flux. Vegetatio 1989, 80, 71–89. [Google Scholar] [CrossRef]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; Monson, R.K.; et al. On the Use of MODIS EVI to Assess Gross Primary Productivity of North American Ecosystems. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef]
- Wu, G.; Guan, K.; Jiang, C.; Peng, B.; Kimm, H.; Chen, M.; Yang, X.; Wang, S.; Suyker, A.E.; Bernacchi, C.J.; et al. Radiance-Based NIRv as a Proxy for GPP of Corn and Soybean. Environ. Res. Lett. 2020, 15, 034009. [Google Scholar] [CrossRef]
- Xin, F.; Xiao, X.; Zhao, B.; Miyata, A.; Baldocchi, D.; Knox, S.; Kang, M.; Shim, K.; Min, S.; Chen, B.; et al. Modeling Gross Primary Production of Paddy Rice Cropland through Analyses of Data from CO2 Eddy Flux Tower Sites and MODIS Images. Remote Sens. Environ. 2017, 190, 42–55. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Masek, J.G.; Verma, S.B.; Suyker, A.E. Synoptic Monitoring of Gross Primary Productivity of Maize Using Landsat Data. IEEE Geosci. Remote Sens. Lett. 2008, 5, 133–137. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, Y.B.; Lyapustin, A.I.; Wang, Y.; Zhang, X.; Suyker, A.; Verma, S.; Shuai, Y.; Middleton, E.M. Estimation of Crop Gross Primary Production (GPP): II. Do Scaled MODIS Vegetation Indices Improve Performance? Agric. For. Meteorol. 2015, 200, 1–8. [Google Scholar] [CrossRef]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy Near-Infrared Reflectance and Terrestrial Photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W.; Rivard, B.; Feng, J. Remote Estimation of Gross Primary Production in Wheat Using Chlorophyll-Related Vegetation Indices. Agric. For. Meteorol. 2009, 149, 1015–1021. [Google Scholar] [CrossRef]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Bolstad, P.V.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; et al. A New Model of Gross Primary Productivity for North American Ecosystems Based Solely on the Enhanced Vegetation Index and Land Surface Temperature from MODIS. Remote Sens. Environ. 2008, 112, 1633–1646. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, G.; Yan, H.; Zhu, X.; Li, S.; Wang, Q.; Zhang, J.; Wang, Y.; Li, Y.; Zhao, L.; et al. A MODIS-Based Photosynthetic Capacity Model to Estimate Gross Primary Production in Northern China and the Tibetan Plateau. Remote Sens. Environ. 2014, 148, 108–118. [Google Scholar] [CrossRef]
- Running, S.W.; Thornton, P.E.; Nemani, R.; Glassy, J.M. Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System. In Methods in Ecosystem Science; Springer: Berlin/Heidelberg, Germany, 2000; pp. 44–57. [Google Scholar] [CrossRef]
- Wang, S.; Huang, K.; Yan, H.; Yan, H.; Zhou, L.; Wang, H.; Zhang, J.; Yan, J.; Zhao, L.; Wang, Y.; et al. Improving the Light Use Efficiency Model for Simulating Terrestrial Vegetation Gross Primary Production by the Inclusion of Diffuse Radiation across Ecosystems in China. Ecol. Complex 2015, 23, 1–13. [Google Scholar] [CrossRef]
- Xie, X.; Li, A.; Jin, H.; Bian, J.; Zhang, Z.; Nan, X. Comparing Three Remotely Sensed Approaches for Simulating Gross Primary Productivity over Mountainous Watersheds: A Case Study in the Wanglang National Nature Reserve, China. Remote Sens. 2021, 13, 3567. [Google Scholar] [CrossRef]
- Pôças, I.; Calera, A.; Campos, I.; Cunha, M. Remote Sensing for Estimating and Mapping Single and Basal Crop Coefficientes: A Review on Spectral Vegetation Indices Approaches. Agric. Water Manag. 2020, 233, 106081. [Google Scholar] [CrossRef]
- Suarez, L.A.; Robson, A.; McPhee, J.; O’Halloran, J.; van Sprang, C. Accuracy of Carrot Yield Forecasting Using Proximal Hyperspectral and Satellite Multispectral Data. Precis. Agric. 2020, 21, 1304–1326. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, J.; Ma, M. Evaluating the Performance of Satellite-Derived Vegetation Indices for Estimating Gross Primary Productivity Using FLUXNET Observations across the Globe. Remote Sens. 2019, 11, 1823. [Google Scholar] [CrossRef]
- Yin, G.; Verger, A.; Descals, A.; Filella, I.; Peñuelas, J. A Broadband Green-Red Vegetation Index for Monitoring Gross Primary Production Phenology. J. Remote Sens. 2022, 2022, 9764982. [Google Scholar] [CrossRef]
- Li, C.; Han, W.; Peng, M. Improving the Spatial and Temporal Estimating of Daytime Variation in Maize Net Primary Production Using Unmanned Aerial Vehicle-Based Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102467. [Google Scholar] [CrossRef]
- Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs Challenge to Assess Water Stress for Sustainable Agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Shao, G.; Han, W.; Zhang, H.; Liu, S.; Wang, Y.; Zhang, L.; Cui, X. Mapping Maize Crop Coefficient Kc Using Random Forest Algorithm Based on Leaf Area Index and UAV-Based Multispectral Vegetation Indices. Agric. Water Manag. 2021, 252, 106906. [Google Scholar] [CrossRef]
- Peng, M.; Han, W.; Li, C.; Yao, X.; Shao, G. Modeling the Daytime Net Primary Productivity of Maize at the Canopy Scale Based on UAV Multispectral Imagery and Machine Learning. J. Clean. Prod. 2022, 367, 133041. [Google Scholar] [CrossRef]
- AGRONET Production and Yield of the Carrot Crop in Colombia. Available online: http://www.agronet.gov.co/Documents/13-ZANAHORIA_2017.pdf (accessed on 1 November 2022).
- Martínez-Maldonado, F.E.; Castaño-Marin, A.M.; Góez-Vinasco, G.A.; Marin, F.R. Gross Primary Production of Rainfed and Irrigated Potato (Solanum tuberosum L.) in the Colombian Andean Region Using Eddy Covariance Technique. Water 2021, 13, 3223. [Google Scholar] [CrossRef]
- Martínez-Maldonado, F.E.; Castaño-Marín, A.M.; Góez-Vinasco, G.A.; Marin, F.R. Upscaling Gross Primary Production from Leaf to Canopy for Potato Crop (Solanum tuberosum L.). Climate 2022, 10, 127. [Google Scholar] [CrossRef]
- Grace, J. Understanding and Managing the Global Carbon Cycle. J. Ecol. 2004, 92, 189–202. [Google Scholar] [CrossRef]
- Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; et al. Gap Filling Strategies for Defensible Annual Sums of Net Ecosystem Exchange. Agric. For. Meteorol. 2001, 107, 43–69. [Google Scholar] [CrossRef]
- Tagesson, T.; Fensholt, R.; Cropley, F.; Guiro, I.; Horion, S.; Ehammer, A.; Ardö, J. Dynamics in Carbon Exchange Fluxes for a Grazed Semi-Arid Savanna Ecosystem in West Africa. Agric. Ecosyst. Environ. 2015, 205, 15–24. [Google Scholar] [CrossRef]
- Micasense Image Procesing. Available online: https://github.com/rasmusfenger/micasense_imageprocessing_sequoia (accessed on 11 April 2022).
- Duarte-Carvajalino, J.M.; Silva-Arero, E.A.; Góez-Vinasco, G.A.; Torres-Delgado, L.M.; Ocampo-Paez, O.D.; Castaño-Marín, A.M. Estimation of Water Stress in Potato Plants Using Hyperspectral Imagery and Machine Learning Algorithms. Horticulturae 2021, 7, 176. [Google Scholar] [CrossRef]
- El-Gammal, M.I.; Ali, R.R.; Abou Samra, R.M. NDVI Threshold Classification for Detecting Vegetation Cover in Damietta Governorate. J. Am. 2014, 1, 1003–1545. [Google Scholar]
- Rozenstein, O.; Haymann, N.; Kaplan, G.; Tanny, J. Validation of the Cotton Crop Coefficient Estimation Model Based on Sentinel-2 Imagery and Eddy Covariance Measurements. Agric. Water Manag. 2019, 223, 105715. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.R.E.; Thompson, T.; Lascano, R.J. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground Based Multispectral Data. Proc. 5th Int. Conf. Precis. Agric. 2000, 1619, 6. [Google Scholar]
- ArcGisPro-TNDVI. Available online: https://pro.arcgis.com/es/pro-app/latest/arcpy/image-analyst/tsavi.htm (accessed on 11 April 2022).
- Cawley, G.C.; Talbot, N.L.C. On Over-Fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation. J. Mach. Learn. Res. 2010, 11, 2079–2107. [Google Scholar]
Vegetation Index | Model | RMSE | R2 | p-Value | |
---|---|---|---|---|---|
NIRv | GPP = −0.28(0.16) + 24.12(0.99) × NIRv | 1.6589 | 0.7823 | 0.06 | 7.8 × 10−10 |
MSAVI | GPP = −1.37(0.21) + 16.96(0.68) × MSAVI | 1.7780 | 0.7667 | 4.7 × 10−5 | 6.5 × 10−10 |
MSAVI2 | GPP = −1.28(0.20) + 15.71(0.64) × MSAVI2 | 1.7898 | 0.7652 | 7.2 × 10−5 | 7.6 × 10−10 |
SAVI | GPP = −2.09(0.24) + 17.55(0.72) × SAVI | 1.8446 | 0.7580 | 6.3 × 10−6 | 7.7 × 10−10 |
EVI2 | GPP = −1.45(0.22) + 15.45(0.67) × EVI2 | 1.8730 | 0.7543 | 4.6 × 10−5 | 1.3 × 10−9 |
WDVI | GPP = −0.56(0.16) + 20.38(0.67) × WDVI | 1.8091 | 0.7626 | 3 × 10−3 | 1.1 × 10−10 |
DVI | GPP = −0.58(0.15) + 20.06(0.64) × DVI | 1.8468 | 0.7577 | 2.4 × 10−3 | 7.9 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castaño-Marín, A.M.; Sánchez-Vívas, D.F.; Duarte-Carvajalino, J.M.; Góez-Vinasco, G.A.; Araujo-Carrillo, G.A. Estimating Carrot Gross Primary Production Using UAV-Based Multispectral Imagery. AgriEngineering 2023, 5, 325-337. https://doi.org/10.3390/agriengineering5010021
Castaño-Marín AM, Sánchez-Vívas DF, Duarte-Carvajalino JM, Góez-Vinasco GA, Araujo-Carrillo GA. Estimating Carrot Gross Primary Production Using UAV-Based Multispectral Imagery. AgriEngineering. 2023; 5(1):325-337. https://doi.org/10.3390/agriengineering5010021
Chicago/Turabian StyleCastaño-Marín, Angela María, Diego Fernando Sánchez-Vívas, Julio Martin Duarte-Carvajalino, Gerardo Antonio Góez-Vinasco, and Gustavo Alfonso Araujo-Carrillo. 2023. "Estimating Carrot Gross Primary Production Using UAV-Based Multispectral Imagery" AgriEngineering 5, no. 1: 325-337. https://doi.org/10.3390/agriengineering5010021
APA StyleCastaño-Marín, A. M., Sánchez-Vívas, D. F., Duarte-Carvajalino, J. M., Góez-Vinasco, G. A., & Araujo-Carrillo, G. A. (2023). Estimating Carrot Gross Primary Production Using UAV-Based Multispectral Imagery. AgriEngineering, 5(1), 325-337. https://doi.org/10.3390/agriengineering5010021