Robust Coffee Rust Detection Using UAV-Based Aerial RGB Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Coffee Leaf Rust and the RoCoLe Database
2.2. Study Area in El Salvador
2.3. UAV and Camera System
2.4. Experimental Design
2.4.1. Image Processing Using ImageJ Software
2.4.2. Image Processing Using Python
2.5. Statistic Evaluation
3. Results
3.1. Results Obtained Using RoCoLe Dataset
3.2. Results Obtained with the UAV’s RGB Camera
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. Most Agricultural Funding Distorts Prices, Harms Environment: UN Report. Available online: https://news.un.org/en/story/2021/09/1099792 (accessed on 13 July 2022).
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. Bioscience 2017, 67, 386–391. [Google Scholar] [CrossRef]
- Sarabia, R.; Aquino, A.; Ponce, J.M.; López, G.; Andújar, J.M. Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis. Remote Sens. 2020, 12, 748. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural Land Systems Importance for Supporting Food Security and Sustainable Development Goals: A Systematic Review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef] [PubMed]
- Sera, G.H.; de Carvalho, C.H.S.; de Rezende Abrahão, J.C.; Pozza, E.A.; Matiello, J.B.; de Almeida, S.R.; Bartelega, L.; dos Santos Botelho, D.M. Coffee Leaf Rust in Brazil: Historical Events, Current Situation, and Control Measures. Agronomy 2022, 12, 496. [Google Scholar] [CrossRef]
- Gichuru, E.; Alwora, G.; Gimase, J.; Kathurima, C. Coffee Leaf Rust (Hemileia vastatrix) in Kenya—A Review. Agronomy 2021, 11, 2590. [Google Scholar] [CrossRef]
- Sott, M.K.; Furstenau, L.B.; Kipper, L.M.; Giraldo, F.D.; López-Robles, J.R.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access 2020, 8, 149854–149867. [Google Scholar] [CrossRef]
- Nogueira Martins, R.; de Assis de Carvalho Pinto, F.; Marçal de Queiroz, D.; Sárvio Magalhães Valente, D.; Tadeu Fim Rosas, J.; Fagundes Portes, M.; Sânzio Aguiar Cerqueira, E. Digital Mapping of Coffee Ripeness Using UAV-Based Multispectral Imagery. Comput. Electron. Agric. 2023, 204, 107499. [Google Scholar] [CrossRef]
- dos Santos, L.M.; Marin, D.B.; de Figueiredo Carvalho, M.A.; Dias, J.E.L.; de Oliveira Alecrim, A.; e Silva, M.D.L.O. Vegetation Indices Applied to Suborbital Multispectral Images of Healthy Coffee and Coffee Infested with Coffee Leaf Miner. AgriEngineering 2022, 4, 311–319. [Google Scholar] [CrossRef]
- Qazi, S.; Khawaja, B.A.; Farooq, Q.U. IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A Critical Review, Current Challenges and Future Trends. IEEE Access 2022, 10, 21219–21235. [Google Scholar] [CrossRef]
- Velusamy, P.; Rajendran, S.; Mahendran, R.K.; Naseer, S.; Shafiq, M.; Choi, J.-G. Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges. Energies 2021, 15, 217. [Google Scholar] [CrossRef]
- Roberts, D.P.; Short, N.M.; Sill, J.; Lakshman, D.K.; Hu, X.; Buser, M. Precision Agriculture and Geospatial Techniques for Sustainable Disease Control. Indian Phytopathol. 2021, 74, 287–305. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments. Precis. Agric 2021, 22, 2053–2091. [Google Scholar] [CrossRef]
- Singh, A.P.; Yerudkar, A.; Mariani, V.; Iannelli, L.; Glielmo, L. A Bibliometric Review of the Use of Unmanned Aerial Vehicles in Precision Agriculture and Precision Viticulture for Sensing Applications. Remote Sens. 2022, 14, 1604. [Google Scholar] [CrossRef]
- Cortez, M.L.J.; de Carvalho Alves, M.; Carvalho, G.R.; Pozza, E.A. Relationship between Sentinel-2 Orbital Data and in Situ Monitoring of Coffee Rust. SN Appl. Sci. 2020, 2, 1460. [Google Scholar] [CrossRef]
- de Oliveira Pires, M.S.; de Carvalho Alves, M.; Pozza, E.A. Multispectral Radiometric Characterization of Coffee Rust Epidemic in Different Irrigation Management Systems. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102016. [Google Scholar] [CrossRef]
- da Soares, A.S.; Vieira, B.S.; Bezerra, T.A.; Martins, G.D.; Siquieroli, A.C.S. Early Detection of Coffee Leaf Rust Caused by Hemileia vastatrix Using Multispectral Images. Agronomy 2022, 12, 2911. [Google Scholar] [CrossRef]
- Velásquez, D.; Sánchez, A.; Sarmiento, S.; Toro, M.; Maiza, M.; Sierra, B. A Method for Detecting Coffee Leaf Rust through Wireless Sensor Networks, Remote Sensing, and Deep Learning: Case Study of the Caturra Variety in Colombia. Appl. Sci. 2020, 10, 697. [Google Scholar] [CrossRef]
- Marin, D.B.; e Ferraz, G.A.S.; Santana, L.S.; Barbosa, B.D.S.; Barata, R.A.P.; Osco, L.P.; Ramos, A.P.M.; Guimarães, P.H.S. Detecting Coffee Leaf Rust with UAV-Based Vegetation Indices and Decision Tree Machine Learning Models. Comput. Electron. Agric. 2021, 190, 106476. [Google Scholar] [CrossRef]
- Chavarro, A.F.; Renza, D.; Ballesteros, D.M. Influence of Hyperparameters in Deep Learning Models for Coffee Rust Detection. Appl. Sci. 2023, 13, 4565. [Google Scholar] [CrossRef]
- Faisal, M.; Leu, J.-S.; Darmawan, J.T. Model Selection of Hybrid Feature Fusion for Coffee Leaf Disease Classification. IEEE Access 2023, 11, 62281–62291. [Google Scholar] [CrossRef]
- Avelino, J.; Gagliardi, S.; Perfecto, I.; Isaac, M.E.; Liebig, T.; Vandermeer, J.; Merle, I.; Hajian-Forooshani, Z.; Motisi, N. Tree Effects on Coffee Leaf Rust at Field and Landscape Scales. Plant Dis. 2023, 107, 247–261. [Google Scholar] [CrossRef]
- Lu, L.; Tibpromma, S.; Karunarathna, S.C.; Jayawardena, R.S.; Lumyong, S.; Xu, J.; Hyde, K.D. Comprehensive Review of Fungi on Coffee. Pathogens 2022, 11, 411. [Google Scholar] [CrossRef] [PubMed]
- Wintgens, J.N. Coffee: Growing, Processing, Sustainable Production. In A Guidebook for Growers, Processors, Traders, and Researchers; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004. [Google Scholar]
- Parraga-Alava, J.; Cusme, K.; Loor, A.; Santander, E. RoCoLe: A Robusta Coffee Leaf Images Dataset for Evaluation of Machine Learning Based Methods in Plant Diseases Recognition. Data Brief 2019, 25, 104414. [Google Scholar] [CrossRef]
- Chen, X.; Mesarich, C.H.; Kerckhoffs, H.; Hutchins, D.; Sofkova-Bobcheva, S. Pucciniastrum minimum Is the Causal Agent of Blueberry Leaf Rust on Different Vaccinium Species in Hawke’s Bay, New Zealand. Australas. Plant Pathol. 2023, 52, 155–162. [Google Scholar] [CrossRef]
- Ayalew, B.; Hylander, K.; Zewdie, B.; Shimales, T.; Adugna, G.; Mendesil, E.; Nemomissa, S.; Tack, A.J.M. The Impact of Shade Tree Species Identity on Coffee Pests and Diseases. Agric. Ecosyst. Environ. 2022, 340, 108152. [Google Scholar] [CrossRef]
- Foucher, A.; Tassano, M.; Chaboche, P.-A.; Chalar, G.; Cabrera, M.; Gonzalez, J.; Cabral, P.; Simon, A.-C.; Agelou, M.; Ramon, R. Inexorable Land Degradation Due to Agriculture Expansion in South American Pampa. Nat. Sustain. 2023, 6, 662–670. [Google Scholar] [CrossRef]
- Kuan, D.T.; Sawchuk, A.A.; Strand, T.C.; Chavel, P. Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise. IEEE Trans. Pattern Anal. Mach. Intell. 1985, PAMI-7, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Jia, X.; Liu, T.; Liu, S.; Meng, H.; Nandi, A.K. Adaptive Morphological Reconstruction for Seeded Image Segmentation. IEEE Trans. Image Process. 2019, 28, 5510–5523. [Google Scholar] [CrossRef] [PubMed]
- Yuen, H.; Princen, J.; Illingworth, J.; Kittler, J. Comparative Study of Hough Transform Methods for Circle Finding. Image Vis. Comput. 1990, 8, 71–77. [Google Scholar] [CrossRef]
- Kuo, C.-J.; Chen, C.-C.; Wang, D.-C.; Chen, T.-T.; Chou, Y.-C.; Pai, M.-Y.; Horng, G.-J.; Hung, M.-H.; Lin, Y.-C.; Hsu, T.-H. Improving Defect Inspection Quality of Deep-Learning Network in Dense Beans by Using Hough Circle Transform for Coffee Industry. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 798–805. [Google Scholar]
- Krohling, R.; Tozzi de Souza, J.E.; Tassis, L.M. BRACOT—A Brazilian Arabica Coffee Tree Images Dataset for Instance Segmentation of Coffee Leaves. Mendeley Data 2021, 1. [Google Scholar] [CrossRef]
- Brito Silva, L.; Cavalcante Carneiro, Á.L.; Silveira Almeida Renaud Faulin, M. Rust (Hemileia vastatrix) and Leaf Miner (Leucoptera coffeella) in Coffee Crop (Coffea arabica). Mendeley Data 2020, 4. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Koenigkan, L.V.; Halfeld-Vieira, B.A.; Costa, R.V.; Nechet, K.L.; Godoy, C.V.; Junior, M.L.; Patricio, F.R.A.; Talamini, V.; Chitarra, L.G. Annotated Plant Pathology Databases for Image-Based Detection and Recognition of Diseases. IEEE Lat. Am. Trans. 2018, 16, 1749–1757. [Google Scholar] [CrossRef]
- Montalbo, F.J.P.; Hernandez, A.A. Classifying Barako Coffee Leaf Diseases Using Deep Convolutional Models. Int. J. Adv. Intell. Inform. 2020, 6, 197. [Google Scholar] [CrossRef]
- Fenu, G.; Malloci, F.M. Evaluating Impacts between Laboratory and Field-Collected Datasets for Plant Disease Classification. Agronomy 2022, 12, 2359. [Google Scholar] [CrossRef]
- Chen, C.-J.; Huang, Y.-Y.; Li, Y.-S.; Chen, Y.-C.; Chang, C.-Y.; Huang, Y.-M. Identification of Fruit Tree Pests with Deep Learning on Embedded Drone to Achieve Accurate Pesticide Spraying. IEEE Access 2021, 9, 21986–21997. [Google Scholar] [CrossRef]
- DJI. Official Website. Available online: https://www.dji.com/global (accessed on 12 June 2023).
- Precision Hawk. PrecisionAnalytics Agriculture. Available online: https://www.precisionhawk.com/ (accessed on 13 July 2022).
- Aerobotics. Take Precise Action to Achieve Your Optimal Yields. Available online: https://www.aerobotics.com/farm#Pest-Disease (accessed on 13 July 2022).
- AGRIVI. AGRIVI: Farm Management Software for Digital Agriculture. Available online: https://www.agrivi.com/ (accessed on 12 June 2023).
- Brunelli, D.; Albanese, A.; d’Acunto, D.; Nardello, M. Energy Neutral Machine Learning Based Iot Device for Pest Detection in Precision Agriculture. IEEE Internet Things Mag. 2019, 2, 10–13. [Google Scholar] [CrossRef]
- Bažok, R. Integrated Pest Management of Field Crops. Agriculture 2022, 12, 425. [Google Scholar] [CrossRef]
Variable | Total | Efficiency |
---|---|---|
n = 1560 | (%) | |
Healthy leaf, n (%) | 695 (44.51) | 97.98% |
Level I leaf rust, n (%) | 487 (31.22) | 98.15% |
Level II leaf rust, n (%) | 166 (10.64) | 100% |
Level III leaf rust, n (%) | 62 (3.97) | 100% |
Level IV leaf rust, n (%) | 30 (1.93) | 100% |
Red spider mite, n (%) | 120 (7.69) | -- |
Variables | Chi-Square Test | KRCC | ||
---|---|---|---|---|
Value | p | Value | p | |
Rust Presence | 1457.73 | <0.001 | 0.967 | <0.001 |
Variables | Total | Chi-Square Test | KRCC | ||
---|---|---|---|---|---|
n = 96 | Value | p | Value | p | |
Rust presence (%) | 41 (42.71) | 73.308 | <0.001 | 0.874 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Gallo, Y.; Escobar-Benitez, B.; Rodriguez-Lainez, J. Robust Coffee Rust Detection Using UAV-Based Aerial RGB Imagery. AgriEngineering 2023, 5, 1415-1431. https://doi.org/10.3390/agriengineering5030088
Rodriguez-Gallo Y, Escobar-Benitez B, Rodriguez-Lainez J. Robust Coffee Rust Detection Using UAV-Based Aerial RGB Imagery. AgriEngineering. 2023; 5(3):1415-1431. https://doi.org/10.3390/agriengineering5030088
Chicago/Turabian StyleRodriguez-Gallo, Yakdiel, Byron Escobar-Benitez, and Jony Rodriguez-Lainez. 2023. "Robust Coffee Rust Detection Using UAV-Based Aerial RGB Imagery" AgriEngineering 5, no. 3: 1415-1431. https://doi.org/10.3390/agriengineering5030088
APA StyleRodriguez-Gallo, Y., Escobar-Benitez, B., & Rodriguez-Lainez, J. (2023). Robust Coffee Rust Detection Using UAV-Based Aerial RGB Imagery. AgriEngineering, 5(3), 1415-1431. https://doi.org/10.3390/agriengineering5030088