CFD Model Verification and Aerodynamic Analysis in Large-Scaled Venlo Greenhouse for Tomato Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Simulation
2.2. Target Greenhouse Design
2.3. Atmospheric Boundary-Layer (ABL) Design
2.4. Model Verification Theories
2.5. Ventilation Efficiency Theories
2.6. Study Procedure
2.6.1. Greenhouse CFD Modeling and Validation
- Identifying a recommended grid size. The 0.2 m grid resolution and RNG k-ε turbulence model were adapted from the literature and used in the 3D CFD model to generate a reference set of data.
- Selection of grid resolution range for GIT study. With reference to the reviewed literature, a range between 0.3 m and 3 m for the resolution was selected for optimal resolution determination.
- GIT study. The average air velocity data for all the coarse grid resolutions were compared to the reference data. The grid resolution above, which the results started to diverge from the reference data, was selected as the optimal grid and tested in the 3D CFD model.
- Y+ study. The selected optimal grid was used to check the Y+ test with the averaged air velocity extracted at the study heights in the CFD model.
- Verification. The 3D results were statistically compared to the reference data by evaluating the R2 and RMSE and checking the Y+. Near-wall mesh refinement using the first-layer height of 0.04 m was used to iteratively adjust the wall Y+ value into the target range. When the verification procedure was all satisfied, the natural ventilation, microenvironment distribution, and flow pattern were analyzed to assess the performance of the designed model.
2.6.2. Aerodynamic Analysis of CFD Greenhouse Model
3. Results and Discussion
3.1. Greenhouse CFD Modeling and Validation
3.2. Aerodynamic Analysis of CFD Greenhouse Model
3.2.1. Internal Airflow Pattern
3.2.2. Regional Ventilation Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Misra, A.K. Climate change and challenges of water and food security. Int. J. Sustain. Built Environ. 2014, 3, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Gruda, N.; Bisbis, M.; Tanny, J. Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production–a review. J. Clean. Prod. 2019, 225, 324–339. [Google Scholar] [CrossRef]
- Akrami, M.; Javadi, A.A.; Hassanein, M.J.; Farmani, R.; Dibaj, M.; Tabor, G.R.; Negm, A. Study of the effects of vent configuration on mono-span greenhouse ventilation using computational fluid dynamics. Sustainability 2020, 12, 986. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Zhang, L.; Xia, X. Hierarchical model predictive control of Venlo-type greenhouse climate for improving energy efficiency and reducing operating cost. J. Clean. Prod. 2020, 264, 121513. [Google Scholar] [CrossRef]
- Villagran, E.; Bojacá, C.; Akrami, M. Contribution to the sustainability of agricultural production in greenhouses built on slope soils: A numerical study of the microclimatic behavior of a typical Colombian structure. Sustainability 2021, 13, 4748. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Lee, I.-B.; Kwon, K.-S.; Ha, T.-H.; Yeo, U.-H.; Park, S.-J.; Kim, R.-W.; Jo, Y.-S.; Lee, S.-N. Analysis of natural ventilation rates of venlo-type greenhouse built on reclaimed lands using CFD. J. Korean Soc. Agric. Eng. 2015, 57, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-y.; Lee, I.-b.; Kim, R.-w. Evaluation of wind-driven natural ventilation of single-span greenhouses built on reclaimed coastal land. Biosyst. Eng. 2018, 171, 120–142. [Google Scholar] [CrossRef]
- Seo, I.H.; Lee, I.B.; Shin, M.H.; Lee, G.Y.; Hwang, H.S.; Hong, S.W.; Bitog, J.P.; Yoo, J.I.; Kwon, K.S.; Kim, Y.H.; et al. Numerical Prediction of Fugitive Dust Dispersion on Reclaimed Land in Korea. Trans. ASABE 2010, 53, 891–901. [Google Scholar] [CrossRef]
- Van Henten, E. Greenhouse Climate Management: An Optimal Control Approach; Wageningen University and Research: Wageningen, The Netherlands, 1994. [Google Scholar]
- Yang, S.-H.; Rhee, J.Y. Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating. Appl. Energy 2013, 105, 244–251. [Google Scholar] [CrossRef]
- Canakci, M.; Yasemin Emekli, N.; Bilgin, S.; Caglayan, N. Heating requirement and its costs in greenhouse structures: A case study for Mediterranean region of Turkey. Renew. Sustain. Energy Rev. 2013, 24, 483–490. [Google Scholar] [CrossRef]
- Campen, J.; Bot, G. Determination of greenhouse-specific aspects of ventilation using three-dimensional computational fluid dynamics. Biosyst. Eng. 2003, 84, 69–77. [Google Scholar] [CrossRef]
- Benni, S.; Tassinari, P.; Bonora, F.; Barbaresi, A.; Torreggiani, D. Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy Build. 2016, 125, 276–286. [Google Scholar] [CrossRef]
- Ganguly, A.; Ghosh, S. Model development and experimental validation of a floriculture greenhouse under natural ventilation. Energy Build. 2009, 41, 521–527. [Google Scholar] [CrossRef]
- Katsoulas, N.; Bartzanas, T.; Boulard, T.; Mermier, M.; Kittas, C. Effect of vent openings and insect screens on greenhouse ventilation. Biosyst. Eng. 2006, 93, 427–436. [Google Scholar] [CrossRef]
- Kittas, C.; Bartzanas, T. Greenhouse microclimate and dehumidification effectiveness under different ventilator configurations. Build. Environ. 2007, 42, 3774–3784. [Google Scholar] [CrossRef]
- Molina-Aiz, F.; Valera, D.; Peña, A.; Gil, J.; López, A. A study of natural ventilation in an Almería-type greenhouse with insect screens by means of tri-sonic anemometry. Biosyst. Eng. 2009, 104, 224–242. [Google Scholar] [CrossRef]
- Molina-Aiz, F.; Fatnassi, H.; Boulard, T.; Roy, J.-C.; Valera, D. Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses. Comput. Electron. Agric. 2010, 72, 69–86. [Google Scholar] [CrossRef]
- Khaoua, S.O.; Bournet, P.; Migeon, C.; Boulard, T.; Chassériaux, G. Analysis of greenhouse ventilation efficiency based on computational fluid dynamics. Biosyst. Eng. 2006, 95, 83–98. [Google Scholar] [CrossRef]
- Teitel, M.; Ziskind, G.; Liran, O.; Dubovsky, V.; Letan, R. Effect of wind direction on greenhouse ventilation rate, airflow patterns and temperature distributions. Biosyst. Eng. 2008, 101, 351–369. [Google Scholar] [CrossRef]
- In-Bok, L.; Nam-Kyu, Y.; Thierry, B.; Claude, R.J.; Se-Woon, H.; Si-Heung, S. Development of an aerodynamic simulation for studying microclimate of plant canopy in greenhouse-(2) Development of CFD model to study the effect of tomato plants on internal climate of greenhouse. J. Bio-Environ. Control 2006, 15, 296–305. [Google Scholar]
- Yu, I.-H.; Yun, N.-K.; Cho, M.-W.; Ryu, H.-R.; Moon, D.-G. Development of CFD model for analyzing the air flow and temperature distribution in greenhouse with air-circulation fans. Korean J. Agric. Sci. 2014, 41, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-W.; Exadaktylos, V.; Lee, I.-B.; Amon, T.; Youssef, A.; Norton, T.; Berckmans, D. Validation of an open source CFD code to simulate natural ventilation for agricultural buildings. Comput. Electron. Agric. 2017, 138, 80–91. [Google Scholar] [CrossRef]
- Choi, M.K.; Yun, S.W.; Yu, I.H.; Lee, S.Y.; Lee, S.-y.; Yoon, Y.C. Settlement instrumentation of greenhouse foundation in reclaimed land. J. Bio-Environ. Control 2015, 24, 85–92. [Google Scholar] [CrossRef]
- Villagran, E.; Ramirez, R.; Rodriguez, A.; Pacheco, R.L.; Jaramillo, J. Simulation of the thermal and aerodynamic behavior of an established screenhouse under warm tropical climate conditions: A numerical approach. Int. J. Sustain. Dev. Plan 2020, 15, 487–499. [Google Scholar] [CrossRef]
- Seo, I.-H.; Lee, H.J.; Wi, S.H.; Lee, S.-W.; Kim, S.K. Validation of an air temperature gradient using computational fluid dynamics in a semi-open type greenhouse and determination of kimchi cabbage physiological responses to temperature differences. Hortic. Environ. Biotechnol. 2021, 62, 737–750. [Google Scholar] [CrossRef]
- Villagrán, E.; Bojacá, C. Study using a CFD approach of the efficiency of a roof ventilation closure system in a multi-tunnel greenhouse for nighttime microclimate optimization. Rev. Ceres 2020, 67, 345–356. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE Handbook—Fundamentals 2021. Available online: https://www.ashrae.org/technical-resources/ashrae-handbook/description-2021-ashrae-handbook-fundamentals (accessed on 5 December 2022).
- Rocha, G.A.O.; Pichimata, M.A.; Villagran, E. Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability 2021, 13, 10433. [Google Scholar] [CrossRef]
- Villagrán, E.; Flores-Velazquez, J.; Akrami, M.; Bojacá, C. Microclimatic Evaluation of Five Types of Colombian Greenhouses Using Geostatistical Techniques. Sensors 2022, 22, 3925. [Google Scholar] [CrossRef]
- Majdoubi, H.; Boulard, T.; Fatnassi, H.; Bouirden, L. Airflow and microclimate patterns in a one-hectare Canary type greenhouse: An experimental and CFD assisted study. Agric. For. Meteorol. 2009, 149, 1050–1062. [Google Scholar] [CrossRef]
- Boulard, T.; Wang, S. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel. Comput. Electron. Agric. 2002, 34, 173–190. [Google Scholar] [CrossRef]
- Bartzanas, T.; Boulard, T.; Kittas, C. Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insect-proof screen in the openings. Comput. Electron. Agric. 2002, 34, 207–221. [Google Scholar] [CrossRef]
- Hong, S.-W.; Lee, I.-B.; Seo, I.-H. Modelling and predicting wind velocity patterns for windbreak fence design. J. Wind Eng. Ind. Aerodyn. 2015, 142, 53–64. [Google Scholar] [CrossRef]
- Su, N.; Peng, S.; Hong, N.; Zhang, J. Experimental and numerical evaluation of wind-driven natural ventilation and dust suppression effects of coal sheds with porous gables. Build. Environ. 2020, 177, 106855. [Google Scholar] [CrossRef]
- Canonsburg, T.D. ANSYS fluent user’s guide. ANSYS FLUENT User’s Guid 2017, 15317, 724–746. [Google Scholar]
- Franke, J.; Hellsten, A.; Schlünzen, K.; Carissimo, B. Best practice guideline for the CFD simulation of flows in the urban environment—A summary. In Proceedings of the 11th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Cambridge, UK, 2–5 July 2007. [Google Scholar]
- Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1749–1761. [Google Scholar] [CrossRef]
- Hoxey, R.; Richards, P.; Quinn, A.; Robertson, A.; Gough, H. Measurements of the static pressure near the surface in the atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 2021, 209, 104487. [Google Scholar] [CrossRef]
- Roache, P.J. Perspective: A method for uniform reporting of grid refinement studies. J. Fluids Eng. 1994, 116, 405–413. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Perić, M.; Street, R.L. Computational Methods for Fluid Dynamics; Springer: Cham, Switzerland, 2002. [Google Scholar]
- Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries, Incorporated: La Canada, CA, USA, 1994. [Google Scholar]
- Utyuzhnikov, S.V. Generalized wall functions and their application for simulation of turbulent flows. Int. J. Numer. Methods Fluids 2005, 47, 1323–1328. [Google Scholar] [CrossRef] [Green Version]
- Craft, T.J.; Gant, S.E.; Gerasimov, A.V.; Iacovides, H.; Launder, B.E. Wall-function strategies for use in turbulent flow CFD. In Proceedings of the International Heat Transfer Conference Digital Library, Grenoble, France, 18–23 August 2002. [Google Scholar]
- Ariff, M.; Salim, S.M.; Cheah, S.C. Wall Y+ approach for dealing with turbulent flow over a surface mounted cube: Part 1–low Reynolds number. In Proceedings of the 7th International Conference on CFD in the Minerals and Process Industry, Melbourne, Australia, 9–11 December 2009; pp. 1–6. [Google Scholar]
- Seo, I.-H.; Lee, I.-B.; Moon, O.-K.; Kim, H.-T.; Hwang, H.-S.; Hong, S.-W.; Bitog, J.; Yoo, J.-I.; Kwon, K.-S.; Kim, Y.-H. Improvement of the ventilation system of a naturally ventilated broiler house in the cold season using computational simulations. Biosyst. Eng. 2009, 104, 106–117. [Google Scholar] [CrossRef]
- Kim, R.-w.; Hong, S.-w.; Lee, I.-b.; Kwon, K.-S. Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 2: Application of the CFD model. Biosyst. Eng. 2017, 164, 257–280. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Karman constant (k) | 0.42 |
Roughness length (Z0) | 0.03 m |
Empirical constant | 0.09 |
Reference height () | 10 m |
Summer average wind speed | 3.08 m·s−1 |
Frictional velocity (u*) | 0.227 m·s−1 |
Parameter | Symbol | Value |
---|---|---|
Volumetric specific heat of air (W·m−3·°C−1) | CV | 0.3 |
Correction rate of heated area | α | 1.2 |
Solar transmissivity of greenhouse cover | τ | 0.7 |
Evapotranspiration coefficient (Tomato) | f | 0.5 |
Overall heat transfer coefficient (Wm2·min−1·°C−1) | K | 0.08 |
Greenhouse flow area (m2) | Af | 19,200 |
Greenhouse cover area (m2) | Ac | 24,946 |
Greenhouse volume (m3) | V | 124,800 |
Variable | CFD Solver Setting |
---|---|
Solver | Pressure-based solver |
Numerical algorithm | SIMPLE algorithm |
Discretization | Second order |
Operating pressure | 101,325 Pa |
Gravity | 9.81 (m·s−2) |
Air density | Variable (ideal gas) |
Air viscosity | 1.79 (kg·m−1·s−1) |
Turbulence | RNG κ-ε |
Empirical wall function | Enhanced wall functions |
External wind velocity | 3.1 (m·s−2) |
Crop canopy | Porous media (0.8 m width, 3.5 m height) |
Height | R-Square | RMSE |
---|---|---|
0.7 | 0.984 | 5.61 |
2.2 | 0.985 | 3.96 |
3.5 | 0.934 | 2.20 |
Average | 0.968 | 3.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kibwika, A.K.; Seo, H.-J.; Seo, I.-H. CFD Model Verification and Aerodynamic Analysis in Large-Scaled Venlo Greenhouse for Tomato Cultivation. AgriEngineering 2023, 5, 1395-1414. https://doi.org/10.3390/agriengineering5030087
Kibwika AK, Seo H-J, Seo I-H. CFD Model Verification and Aerodynamic Analysis in Large-Scaled Venlo Greenhouse for Tomato Cultivation. AgriEngineering. 2023; 5(3):1395-1414. https://doi.org/10.3390/agriengineering5030087
Chicago/Turabian StyleKibwika, Anthony Kintu, Hyo-Jae Seo, and Il-Hwan Seo. 2023. "CFD Model Verification and Aerodynamic Analysis in Large-Scaled Venlo Greenhouse for Tomato Cultivation" AgriEngineering 5, no. 3: 1395-1414. https://doi.org/10.3390/agriengineering5030087
APA StyleKibwika, A. K., Seo, H. -J., & Seo, I. -H. (2023). CFD Model Verification and Aerodynamic Analysis in Large-Scaled Venlo Greenhouse for Tomato Cultivation. AgriEngineering, 5(3), 1395-1414. https://doi.org/10.3390/agriengineering5030087