Relationship between Leaf Area Index and Yield Components in Farmers’ Paddy Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Fields
2.2. Measurements
2.3. Parametrization of Leaf Area Dynamics
2.4. Statistical Analysis
+ e × LAImax × Te + f × Tm × Te + g × LAImax × Tm × Te + Intercept
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Ji, Y.; Zhang, M.; Xu, Y.; Li, Z.; Tu, D.; Wu, W. Exploring a sustainable rice-cropping system to balance grain yield, environmental footprint and economic benefits in the middle and lower reaches of the Yangtze River in China. J. Clean. Prod. 2023, 404, 136988. [Google Scholar] [CrossRef]
- Horie, T.; Yoshida, T.; Tatsumi, J.; Hirasawa, T.; Imaki, T.; Kobata, T.; Kubota, F.; Nakano, J. “SAKUMOTSUGAKUSORON” (Introduction of Crop Science); Asakura Publishing: Tokyo, Japan, 1999; pp. 37–150. [Google Scholar]
- Aoba, R. Examination of water management elaboration for stable production of high-quality and good-tasting rice using paddy field sensor. Tohoku Agric. Res. 2019, 72, 19–20. [Google Scholar]
- Fukushima, A.; Ohta, H.; Yokogami, N.; Tsuda, N. Effects of Nitrogen Topdressing Time on Growth, Yield, Grain Appearance and Eating Quality of Rice Varieties Bred by Tohoku Agricultural Research Center. Jpn. J. Crop Sci. 2017, 86, 7–14. [Google Scholar] [CrossRef]
- Matsushita, K.; Nagaoka, I.; Sasahara, H.; Maeda, H.; Watanabe, H. Effects of Planting Density on Spikelet Number in Tachiayaka, a Rice (Oryza sativa L.) Cultivar with a Short Panicle. Jpn. J. Crop Sci. 2019, 88, 253–258. [Google Scholar] [CrossRef]
- Kitagawa, H.; Ichihara, Y.; Hara, Y.; Nakano, K. Effect of Drainage on the Yield of Rice and Occurrence of “Hagare” Symptom in the Paddy Fields in Nagasaki Prefecture. Jpn. J. Crop Sci. 2018, 87, 198–208. [Google Scholar] [CrossRef]
- Pinto, M.A.B.; Parfitt, J.M.B.; Timm, L.C.; Faria, L.C.; Concenço, G.; Stumpf, L.; Nörenberg, B.G. Sprinkler irrigation in lowland rice: Crop yield and its components as a function of water availability in different phenological phases. Field Crop Res. 2020, 248, 107714. [Google Scholar] [CrossRef]
- Lee, J.; Choi, S.; Lee, Y.; Kim, S.Y. Impact of manure compost amendments on NH3 volatilization in rice paddy ecosystems during cultivation. Environ. Pollut. 2021, 288, 117726. [Google Scholar] [CrossRef]
- Liu, L.; Ouyang, W.; Wang, Y.; Lian, Z.; Pan, J.; Liu, H.; Chen, J.; Niu, S. Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects. Agric. Water Manag. 2023, 277, 108102. [Google Scholar] [CrossRef]
- Hafez, M.; El-Ezz, S.F.A.; Popov, A.I.; Rashad, M. Organic Amendments Combined with Plant Growth-Promoting Rhizobacteria (Azospirillum Brasilense) as an Eco-Friendly By-Product to Remediate and Enhance the Fertility of Saline Sodic-Soils in Egypt. Commun Soil Sci Plant Anal. 2021, 52, 1416–1433. [Google Scholar] [CrossRef]
- Sasaki, J. Application to diagnosis technology of the growth information for the production of rice with high grain quality and good eating quality. J. Jpn. Soc. Agr. Mac. 2007, 69, 12–16. [Google Scholar]
- Sato, T.; Azuma, S.; Kanai, M.; Arisawa, M. Prediction Number of Spikelets by Growth Diagnosis on Panicle Formation Stage for Ear Manuring in Rice Cultivar ‘Koshihikari’. Hokuriku Crop Sci. 2014, 49, 51–53. [Google Scholar]
- Hirooka, Y.; Homma, K.; Shiraiwa, T.; Kuwada, M. Parameterization of leaf growth in rice (Oryza sativa L.) utilizing a plant canopy analyzer. Field Crop Res. 2016, 186, 117–123. [Google Scholar] [CrossRef]
- Homma, K.; Maki, M.; Hirooka, Y. Development of a rice simulation model for remote-sensing (SIMRIW-RS). J. Agric. Meteorol. 2017, 73, 9–15. [Google Scholar] [CrossRef]
- Kobata, T.; Notsu, T. Relationship between spikelet number and dry matter production or leaf area before heading in rice plant (Oryza sativa L.). Bull. Fac. Agr. Shimane Univ. 1991, 25, 1–4. [Google Scholar]
- Tsuno, Y.; Yamaguchi, T.; Nakano, J.; Kondo, H. Analysis of Grain Filling Process of Rice Plant from the View Point of Sink—Source Relationship and the Role of Root Respiration in Its Relationship. Bull. Fac. Agr. Tottori Univ. 1994, 47, 1–10. [Google Scholar]
- Tartaglia, F.L.; Righi, E.Z.; Rocha, L.; Loose, L.H.; Maldaner, I.C.; Heldwein, A.B. Non-destructive models for leaf area determination in canola. Rev. Bras. Eng. Agríc. Ambient. 2016, 20, 551–556. [Google Scholar] [CrossRef]
- Tsialtas, J.T.; Maslaris, N. Leaf area estimation in a sugar beet cultivar by linear models. Photosynthetica 2005, 43, 477–479. [Google Scholar] [CrossRef]
- LI-3000C Portable Leaf Area Meter. Available online: https://www.licor.com/env/products/leaf_area/LI-3000C/ (accessed on 29 August 2023).
- LAI-2200C Plant Canopy Analyzer. Available online: https://www.licor.com/env/products/leaf_area/LAI-2200C/ (accessed on 29 August 2023).
- Yamamoto, S.; Hashimoto, N.; Homma, K. Evaluation of LAI Dynamics by Using Plant Canopy Analyzer and Its Relationship to Yield Variation of Soybean in Farmer Field. Agriculture 2023, 13, 609. [Google Scholar] [CrossRef]
- Hashimoto, N.; Saito, Y.; Yamamoto, S.; Maki, M.; Homma, K. Evaluation of machine learning to estimate LAI including solar radiation condition at UAV monitoring in paddy fields. J. Remote Sens. Soc. Jpn. 2020, 40, 87–96. [Google Scholar]
- Hashimoto, N.; Saito, Y.; Yamamoto, S.; Ishibashi, T.; Ito, R.; Maki, M.; Homma, K. Feasibility of yield estimation based on leaf area dynamics measurements in rice paddy fields of farmers. Field Crop Res. 2022, 286, 108609. [Google Scholar] [CrossRef]
- Crop Investigation Criteria Editing Committee. Crop Investigation Criteria; Kyushu Branch, Crop Science Society of Japan: Fukuoka, Japan, 2013; pp. 1–42. [Google Scholar]
- Chen, G.; Zhang, J.; Liu, P.; Dong, S. An empirical model for changes in the leaf area of maize. Can. J. Plant Sci. 2014, 94, 749–757. [Google Scholar] [CrossRef]
- Yin, X.; Goudriaan, J.; Lantinga, E.A.; Vos, J.; Spiertz, H.J. A flexible sigmoid function of determinate growth. Ann. Bot. 2003, 91, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, T.; Ohsugi, R. “SAKUMOTSUSEISANSEIRIGAKUNOKISO” (Basics of Crop Production Physiology); Rural Culture Association: Tokyo, Japan, 2016; p. 162. [Google Scholar]
- Tokita, H. Adoption and Spread of Rice Variety “Hitomebore” in Miyagi Prefecture. Rep. Tohoku Br. Crop Sci. Soc. Jpn. 1992, 35, 105–108. [Google Scholar]
- Muramatsu, A.; Watanabe, T.; Sasaki, A.; Ito, H.; Kajihara, A. Resource-Saving Rice Cultivation with Circulated Irrigation of Treated Wastewater. Proc. Jpn. Soc. Civ. Eng. G 2012, 68, III_93–III_101. [Google Scholar]
- Takenaka, Y.; Fukuta, Y.; Yamaya, H.; Yokoyama, T.; Hirasawa, T.; Ookawa, T. Differences in the characteristics for physiological nitrogen use efficiency among rice cultivars grown under low nitrogen condition. Rep. Kanto Br. Crop Sci. Soc. Jpn. 2013, 28, 30–31. [Google Scholar]
- Kawashima, C.; Matsumoto, D.; Ogawa, A. The Relationships between Stomatal Aperture and the Crop Growth Rate, Net Assimilation Rate, Leaf Area Index and Dry Matter Production in Paddy Rice—Focused on the consequences of the water management protocol in Ohgata Village. Jpn. J. Crop Sci. 2009, 78, 324–334. [Google Scholar] [CrossRef]
- Fukushima, A. Effects of Varieties, Fertilization Methods and Transplanting Time on Yielding Ability in Rice—Analysis with a Rice Variety ‘Nijino-kirameki’. Jpn. J. Crop Sci. 2022, 91, 303–314. [Google Scholar] [CrossRef]
- Fukushima, A. Effects of Temperature on Thousand Grain Weight in Rice Cultivation in Japan—Analysis Using Statistical Survey on Crops. Jpn. J. Crop Sci. 2021, 90, 247–251. [Google Scholar] [CrossRef]
Year | Planting Method d | Survey Points/Fields | Planting Density (m) | Date of Sowing | Date of Transplanting | Date of Heading | Date of Harvesting | Fertilizer | |
---|---|---|---|---|---|---|---|---|---|
Basal (g m−2) | Additional (g m−2) | ||||||||
2016 | DS | 10/1 | 0.3 × 0.2 | 24 April | - | 8 August | 13 September | 40 a | - |
TP | 10/1 | 0.3 × 0.2 | 8 May | 18 May | 8August | 13 September | 40 a | - | |
2017 | DS | 80/4 | 0.3 × 0.2 | 7 May | - | 11 August | 21 September | 40 a | - |
TP | 80/4 | 0.3 × 0.2 | 25 April | 15 May | 11 August | 21 September | 40 a | - | |
2018 | DS | 80/4 | 0.3 × 0.2 | 7 May | - | 10 August | 18 September | 40 a | - |
TP | 40/2 | 0.3 × 0.2 | 29 April | 19 May | 10 August | 18 September | 40 a | 5 b | |
2019 | DS | 48/4 | 0.3 × 0.2 | 4 May | - | 8 August | 25 September | 40 c | - |
TP | 48/4 | 0.3 × 0.2 | 16 April | 16 May | 8 August | 12, 17 September | 40 c | - | |
TPd | 48/4 | 0.3 × 0.2 | 22 April | 12 May | 8 August | 17 September | 40 c | - | |
2020 | TP | 16/4 | 0.3 × 0.2 | 12, 14 April | 14 May | 4 August | 11 September | 40 c | - |
Panicle Number (m−2) | Grain Number Per Panicle | Grain-Filling Percentage (%) | 1000-Grain Weight (g) | Dry Grain Weight of the Ripened Grain (g m−2) | LAImax (m2 m−2) | Tm (°Cd) | Te (°Cd) | |
---|---|---|---|---|---|---|---|---|
All | 376.0 (91.3) | 66.6 (10.9) | 80.0 (13.1) | 24.1 (0.8) | 413.7 (113.3) | 2.9 (0.9) | 633.1 (134.7) | 983.0 (84.0) |
Year (Y) | ||||||||
2016 | 420.5 (60.3) ab | 53.7 (6.9) a | 77.0 (6.9) ab | 23.9 (0.8) ab | 371.1 (60.9) ab | 3.1 (0.7) a | 698.5 (71.5) ab | 951.3 (55.5) ab |
2017 | 321.9 (61.1) c | 63.5 (6.7) b | 82.2 (8.8) a | 24.0 (0.6) ab | 378.3 (113.7) a | 2.3 (0.6) b | 641.6 (75.7) a | 971.7 (74.5) ab |
2018 | 454.3 (89.3) a | 73.0 (10.6) c | 80.3 (9.8) a | 24.1 (0.9) a | 452.7 (91.2) b | 2.9 (0.4) a | 740.7 (72.1) b | 1019.5 (45.2) c |
2019 | 356.8 (72.2) d | 65.1 (12.8) b | 74.0 (18.8) b | 24.2 (0.7) a | 398.9 (110.7) a | 3.8 (1.1) c | 536.1 (139.8) c | 954.4 (111.2) a |
2020 | 382.3 (54.5) bd | 69.8 (6.7) bc | 95.5 (1.3) c | 23.5 (0.3) b | 567.9 (72.8) c | 3.3 (0.3) ac | 373.8 (68.0) d | 1029.5 (86.4) bc |
Planting Method (P) | ||||||||
DS | 380.9 (116.9) a | 64.1 (8.2) a | 74.4 (7.9) a | 23.7 (0.6) a | 344.9 (81.2) a | 2.4 (0.6) a | 735.3 (64.5) a | 1024.2 (74.6) a |
TP | 375.1 (54.0) a | 69.2 (11.6) b | 89.2 (5.6) b | 24.4 (0.7) b | 504.2 (72.7) b | 3.2 (0.6) b | 551.5 (109.2) b | 947.4 (70.4) b |
TPd | 353.9 (64.6) a | 67.8 (15.7) ab | 66.6 (26.5) c | 24.5 (0.7) b | 361.3 (123.6) a | 4.5 (1.2) c | 459.8 (73.3) c | 926.1 (81.7) b |
Y | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
P | not significant | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Y × P | <0.001 | <0.001 | not significant | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Component | Intercept | a | b | c | d | e | f | g |
---|---|---|---|---|---|---|---|---|
Panicle number | 0.03 | 0.50 | 0.25 | 0.13 | 0.19 | 0.22 | 0.24 | −0.06 |
not significant | <0.001 | <0.001 | <0.05 | <0.01 | <0.001 | <0.001 | not significant | |
Grain number per panicle | 0.04 | 0.30 | 0.17 | 0.02 | 0.04 | −0.11 | −0.13 | 0.09 |
not significant | <0.001 | <0.01 | not significant | not significant | not significant | <0.05 | not significant | |
Grain-filling percentage | 0.19 | −0.19 | −0.56 | 0.00 | 0.41 | 0.22 | 0.10 | −0.18 |
<0.001 | <0.001 | <0.001 | not significant | <0.001 | <0.001 | <0.05 | <0.01 | |
1000-grain weight | 0.11 | 0.22 | −0.13 | −0.14 | 0.30 | 0.09 | 0.06 | 0.06 |
not significant | <0.001 | <0.05 | <0.05 | <0.001 | not significant | not significant | not significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashimoto, N.; Saito, Y.; Yamamoto, S.; Ishibashi, T.; Ito, R.; Maki, M.; Homma, K. Relationship between Leaf Area Index and Yield Components in Farmers’ Paddy Fields. AgriEngineering 2023, 5, 1754-1765. https://doi.org/10.3390/agriengineering5040108
Hashimoto N, Saito Y, Yamamoto S, Ishibashi T, Ito R, Maki M, Homma K. Relationship between Leaf Area Index and Yield Components in Farmers’ Paddy Fields. AgriEngineering. 2023; 5(4):1754-1765. https://doi.org/10.3390/agriengineering5040108
Chicago/Turabian StyleHashimoto, Naoyuki, Yuki Saito, Shuhei Yamamoto, Taro Ishibashi, Ruito Ito, Masayasu Maki, and Koki Homma. 2023. "Relationship between Leaf Area Index and Yield Components in Farmers’ Paddy Fields" AgriEngineering 5, no. 4: 1754-1765. https://doi.org/10.3390/agriengineering5040108
APA StyleHashimoto, N., Saito, Y., Yamamoto, S., Ishibashi, T., Ito, R., Maki, M., & Homma, K. (2023). Relationship between Leaf Area Index and Yield Components in Farmers’ Paddy Fields. AgriEngineering, 5(4), 1754-1765. https://doi.org/10.3390/agriengineering5040108