Determination of Dry-Matter Content of Kiwifruit before Harvest Based on Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Data Acquisition
2.3. Data-Processing Methods
2.3.1. Whiteboard Calibration
2.3.2. Extraction of Spectral Data
2.3.3. Pre-Processing of Spectral Data
- (1)
- Obtain the ideal spectrum. In practical applications, the ideal spectrum is often not available, so the average of the spectra from all samples is usually taken as the ideal spectrum. This is calculated as follows:
- (2)
- One-dimensional linear regression of the raw hyperspectral data. The tilt offset and linear translation are obtained as follows:
- (3)
- Subtract the original hyperspectral data. The original hyperspectral data are subtracted from the linear translation data and divided by the tilt offset to obtain the MSC-corrected hyperspectral data:
2.3.4. Division of Sample Data
2.3.5. Feature-Band Extraction
2.4. Prediction Model Building and Testing Methods
3. Results and Discussion
3.1. Analysis of Spectral Curve
3.2. Extraction of Feature Bands
3.3. Analysis of PLS prediction
3.3.1. Results for Training Set
3.3.2. Prediction Results for Test Set
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Drummond, L. The Composition and Nutritional Value of Kiwifruit. Adv. Food Nutr. Res. 2013, 68, 33–57. [Google Scholar]
- Yan, H.; Chen, H.; Zhao, J.; Yao, T.; Ding, X. Postharvest H2O2 Treatment Affects Flavor Quality, Texture Quality and ROS Metabolism of ‘Hongshi’ Kiwifruit Fruit Kept at Ambient Conditions. Food Chem. 2023, 405, 134908. [Google Scholar] [CrossRef]
- Tilahun, S.; Choi, H.R.; Park, D.S.; Lee, Y.M.; Choi, J.H.; Baek, M.W.; Hyok, K.; Park, S.M.; Jeong, C.S. Ripening Quality of Kiwifruit Cultivars Is Affected by Harvest Time. Sci. Hortic. 2019, 261, 108936. [Google Scholar] [CrossRef]
- de Brito, A.A.; Campos, F.; dos Reis Nascimento, A.; Damiani, C.; da Silva, F.A.; de Almeida Teixeira, G.H.; Júnior, L.C.C. Non-Destructive Determination of Color, Titratable Acidity, and Dry Matter in Intact Tomatoes Using a Portable Vis-NIR Spectrometer. J. Food Compos. Anal. 2022, 107, 104288. [Google Scholar] [CrossRef]
- Escribano, S.; Biasi, W.V.; Lerud, R.; Slaughter, D.C.; Mitcham, E.J. Non-Destructive Prediction of Soluble Solids and Dry Matter Content Using NIR Spectroscopy and Its Relationship with Sensory Quality in Sweet Cherries. Postharvest Biol. Technol. 2017, 128, 112–120. [Google Scholar] [CrossRef]
- Subedi, P.P.; Walsh, K.B. Assessment of Avocado Fruit Dry Matter Content Using Portable Near Infrared Spectroscopy: Method and Instrumentation Optimisation. Postharvest Biol. Technol. 2020, 161, 111078. [Google Scholar] [CrossRef]
- Zhang, Y.; Nock, J.F.; Al Shoffe, Y.; Watkins, C.B. Non-Destructive Prediction of Soluble Solids and Dry Matter Contents in Eight Apple Cultivars Using Near-Infrared Spectroscopy. Postharvest Biol. Technol. 2019, 151, 111–118. [Google Scholar] [CrossRef]
- Santagapita, P.R.; Tylewicz, U.; Panarese, V.; Rocculi, P.; Dalla Rosa, M. Non-Destructive Assessment of Kiwifruit Physico-Chemical Parameters to Optimise the Osmotic Dehydration Process: A Study on FT-NIR Spectroscopy. Biosyst. Eng. 2016, 142, 101–109. [Google Scholar] [CrossRef]
- Kim, J.G.; Park, Y.; Shin, M.H.; Muneer, S.; Lerud, R.; Michelson, C.; Kang, D.I.; Min, J.H.; Kumarihami, H.C. Application of NIR-Spectroscopy to Predict the Harvesting Maturity, Fruit Ripening and Storage Ability of Ca-Chitosan Treated Baby Kiwifruit. J. Stored Prod. Postharvest Res. 2018, 9, 44–53. [Google Scholar]
- Ciccoritti, R.; Paliotta, M.; Amoriello, T.; Carbone, K. FT-NIR Spectroscopy and Multivariate Classification Strategies for the Postharvest Quality of Green-Fleshed Kiwifruit Varieties. Sci. Hortic. 2019, 257, 108622. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Q.; Tian, X.; Yang, G.; Xia, Y.; Li, J.; Huang, W. Non-Destructive Evaluation of Soluble Solids Content of Apples Using a Developed Portable Vis/NIR Device. Biosyst. Eng. 2020, 193, 138–148. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Guo, W.; Ji, T.; Du, R. Low-Cost and Handheld Detector on Soluble Solids Content and Firmness of Kiwifruit. Infrared Phys. Technol. 2023, 131, 104641. [Google Scholar] [CrossRef]
- Zhu, G.; Tian, C. Determining Sugar Content and Firmness of ‘Fuji’ Apples by Using Portable Near-Infrared Spectrometer and Diffuse Transmittance Spectroscopy. J. Food Process Eng. 2018, 41, e12810. [Google Scholar] [CrossRef]
- Moraes, I.A.D.; Cruz-Tirado, L.J.P.; Barbin, D.F. Online Measurement of Carambola (Averrhoa carambola L.) Physicochemical Properties and Estimation of Maturity Stages Using a Portable NIR Spectrometer. Sci. Hortic. 2022, 304, 111263. [Google Scholar] [CrossRef]
- Mishra, P.; Verschoor, J.; Nijenhuis-de Vries, M.; Polder, G.; Boer, M.P. Portable Near-Infrared Spectral Imaging Combining Deep Learning and Chemometrics for Dry Matter and Soluble Solids Prediction in Intact Kiwifruit. Infrared Phys. Technol. 2023, 131, 104677. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Q.; Wang, B.; Li, W.; Li, W.; Wang, B.; Qian, J. Feasibility of Estimating the Dry Matter Content of Kiwifruits before Being Harvested Using Hyperspectral Technology. Trans. Chin. Soc. Agric. Eng. 2022, 38, 133–140. [Google Scholar]
- Wang, F.; Zhao, C.; Yang, H.; Jiang, H.; Li, L.; Yang, G. Non-Destructive and In-Site Estimation of Apple Quality and Maturity by Hyperspectral Imaging. Comput. Electron. Agric. 2022, 195, 106843. [Google Scholar] [CrossRef]
- Wendel, A.; Underwood, J.; Walsh, K. Maturity Estimation of Mangoes Using Hyperspectral Imaging from a Ground Based Mobile Platform. Comput. Electron. Agric. 2018, 155, 298–313. [Google Scholar] [CrossRef]
- Maleki, M.R.; Mouazen, A.M.; Ramon, H.; De Baerdemaeker, J. Multiplicative Scatter Correction During On-Line Measurement with NIR Spectroscopy. Biosyst. Eng. 2007, 96, 427–433. [Google Scholar] [CrossRef]
- Xing, Z.; Du, C.; Shen, Y.; Ma, F.; Zhou, J. A Method Combining FTIR-ATR and Raman Spectroscopy to Determine Soil Organic Matter: Improvement of Prediction Accuracy Using Competitive Adaptive Reweighted Sampling (CARS). Comput. Electron. Agric. 2021, 191, 106549. [Google Scholar] [CrossRef]
- Chen, H.; Pan, T.; Chen, J.; Lu, Q. Waveband Selection for NIR Spectroscopy Analysis of Soil Organic Matter Based on SG Smoothing and MWPLS Methods. Chemom. Intell. Lab. Syst. 2011, 107, 139–146. [Google Scholar] [CrossRef]
- Han, Q.J.; Wu, H.-L.; Cai, C.-B.; Xu, L.; Yu, R.-Q. An Ensemble of Monte Carlo Uninformative Variable Elimination for Wavelength Selection. Anal. Chim. Acta 2008, 612, 121–125. [Google Scholar] [CrossRef]
- Hu, M.H.; Dong, Q.-L.; Liu, B.-L.; Opara, U.L.; Chen, L. Estimating Blueberry Mechanical Properties Based on Random Frog Selected Hyperspectral Data. Postharvest Biol. Technol. 2015, 106, 1–10. [Google Scholar] [CrossRef]
- Olarewaju, O.O.; Bertling, I.; Magwaza, L.S. Non-Destructive Evaluation of Avocado Fruit Maturity Using Near Infrared Spectroscopy and PLS Regression Models. Sci. Hortic. 2016, 199, 229–236. [Google Scholar] [CrossRef]
- Wei, X.; He, J.-C.; Ye, D.-P.; Jie, D.-F. Navel Orange Maturity Classification by Multispectral Indexes Based on Hyperspectral Diffuse Transmittance Imaging. J. Food Qual. 2017, 2017, 1023498. [Google Scholar] [CrossRef]
- Li, X.; Wei, Y.; Xu, J.; Feng, X.; Wu, F.; Zhou, R.; Jin, J.; Xu, K.; Yu, X.; He, Y. SSC and pH for Sweet Assessment and Maturity Classification of Harvested Cherry Fruit Based on NIR Hyperspectral Imaging Technology. Postharvest Biol. Technol. 2018, 143, 112–118. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, C.T.; Liu, F.; Kong, W.W.; He, Y.; Lou, B.G. Hyperspectral Imaging Analysis for Ripeness Evaluation of Strawberry with Support Vector Machine. J. Food Eng. 2016, 179, 11–18. [Google Scholar] [CrossRef]
Method | Result (nm) | |||||
---|---|---|---|---|---|---|
CARS | 537.03 | 538.93 | 540.83 | 631.09 | 669.09 | 671.14 |
672.57 | 693.41 | 740.87 | 759.22 | 781.27 | 796.98 | |
805.14 | 815.31 | 817.32 | 856.80 | |||
MWPLS | 551.05 | 678.79 | 680.78 | 682.85 | 684.75 | 686.54 |
689.43 | 691.38 | 693.41 | 695.39 | 697.38 | 699.45 | |
MCUVE | 661.00 | 663.08 | 665.09 | 667.08 | 669.09 | 671.14 |
672.57 | 674.56 | 676.67 | 678.79 | 796.98 | 813.24 | |
856.80 | ||||||
RF | 538.93 | 671.14 | 693.41 | 770.61 | 796.98 | 813.24 |
841.21 | 843.29 | 856.80 |
Method | R2 | RMSE (%) |
---|---|---|
All spectral bands | 0.89 | 0.47 |
CARS | 0.91 | 0.43 |
MWPLS | 0.86 | 0.53 |
MCUVE | 0.86 | 0.53 |
RF | 0.92 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Chen, Q.; Qian, J.; Li, J.; Lin, X.; Liu, Z.; Fan, N.; Ma, W. Determination of Dry-Matter Content of Kiwifruit before Harvest Based on Hyperspectral Imaging. AgriEngineering 2024, 6, 52-63. https://doi.org/10.3390/agriengineering6010004
Yang H, Chen Q, Qian J, Li J, Lin X, Liu Z, Fan N, Ma W. Determination of Dry-Matter Content of Kiwifruit before Harvest Based on Hyperspectral Imaging. AgriEngineering. 2024; 6(1):52-63. https://doi.org/10.3390/agriengineering6010004
Chicago/Turabian StyleYang, Han, Qian Chen, Jianping Qian, Jiali Li, Xintao Lin, Zihan Liu, Nana Fan, and Wei Ma. 2024. "Determination of Dry-Matter Content of Kiwifruit before Harvest Based on Hyperspectral Imaging" AgriEngineering 6, no. 1: 52-63. https://doi.org/10.3390/agriengineering6010004
APA StyleYang, H., Chen, Q., Qian, J., Li, J., Lin, X., Liu, Z., Fan, N., & Ma, W. (2024). Determination of Dry-Matter Content of Kiwifruit before Harvest Based on Hyperspectral Imaging. AgriEngineering, 6(1), 52-63. https://doi.org/10.3390/agriengineering6010004