Tomato Fungal Disease Diagnosis Using Few-Shot Learning Based on Deep Feature Extraction and Cosine Similarity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Image Dataset
2.2. Image Preprocessing
2.3. Feature Extraction
2.4. Data Normalization
2.5. Few-Shot Learning
2.6. Similarity Measure Based on Cosine Similarity
3. Results
3.1. Results of Disease Diagnosis Using One-Shot Learning
3.2. Results of Disease Diagnosis Using Few-Shot Learning
4. Discussion
Practical Application of the Proposed Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Asefpour Vakilian, K.; Ampatzidis, Y.; Rahnama, K. Diagnosing the spores of tomato fungal diseases using microscopic image processing and machine learning. Multimed. Tools Appl. 2023, 83, 67283–67301. [Google Scholar] [CrossRef]
- Mohamadzamani, D.; Sajadian, S.; Javidan, S.M. Detection of Callosobruchus maculatus F. with image processing and artificial neural network. Appl. Entomol. Phytopathol. 2020, 88, 103–112. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Plant disease detection and classification by deep learning. Plants 2019, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.N.; Tran, L.V.; Dao SV, T. Early disease classification of mango leaves using feed-forward neural network and hybrid metaheuristic feature selection. IEEE Access 2020, 8, 189960–189973. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Asefpour Vakilian, K.; Ampatzidis, Y. A feature selection method using slime mould optimization algorithm in order to diagnose plant leaf diseases. In Proceedings of the 2022 8th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), Behshahr, Iran, 28–29 December 2022. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Asefpour Vakilian, K.; Ampatzidis, Y. Tomato leaf diseases classification using image processing and weighted ensemble learning. Agron. J. 2024, 116, 1029–1049. [Google Scholar] [CrossRef]
- Jiang, P.; Chen, Y.; Liu, B.; He, D.; Liang, C. Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks. IEEE Access 2019, 7, 59069–59080. [Google Scholar] [CrossRef]
- Sujatha, R.; Chatterjee, J.M.; Jhanjhi, N.; Brohi, S.N. Performance of deep learning vs machine learning in plant leaf disease detection. Microprocess. Microsyst. 2021, 80, 103615. [Google Scholar] [CrossRef]
- Angayarkanni, D.; Jayasimman, L. Recognition of disease in leaves using genetic algorithm and neural network based feature selection. Indian J. Sci. Technol. 2023, 16, 1444–1452. [Google Scholar] [CrossRef]
- Massah, J.; Asefpour Vakilian, K.; Shabanian, M.; Shariatmadari, S.M. Design, development, and performance evaluation of a robot for yield estimation of kiwifruit. Comput. Electron. Agric. 2021, 185, 106132. [Google Scholar] [CrossRef]
- Argüeso, D.; Picon, A.; Irusta, U.; Medela, A.; San-Emeterio, M.G.; Bereciartua, A.; Alvarez-Gila, A. Few-shot learning approach for plant disease classification using images taken in the field. Comput. Electron. Agric. 2020, 175, 105542. [Google Scholar] [CrossRef]
- Li, Y.; Chao, X. Semi-supervised few-shot learning approach for plant diseases recognition. Plant Methods 2021, 17, 18. [Google Scholar] [CrossRef] [PubMed]
- Javidan, S.M.; Banakar, A.; Asefpour Vakilian, K.; Ampatzidis, Y.; Rahnama, K. Early detection and spectral signature identification of tomato fungal diseases (Alternaria alternata, Alternaria solani, Botrytis cinerea, and Fusarium oxysporum) by RGB and hyperspectral image analysis and machine learning. Heliyon 2024, 10, e38017. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Zhang, Z.; Liu, H. Edge connection based Canny edge detection algorithm. Pattern Recognit. Image Anal. 2017, 27, 740–747. [Google Scholar] [CrossRef]
- Fadzli WM, R.W.; Dak, A.Y.; Razak, T.R. A survey on various edge detection techniques in image processing and applied disease detection. J. Comput. Res. Innov. 2024, 9, 23–32. [Google Scholar] [CrossRef]
- Al-Shahrani, A.; Al-Amoudi, W.; Bazaraah, R.; Al-Sharief, A.; Farouquee, H. An image processing-based and deep learning model to classify brain cancer. Eng. Technol. Appl. Sci. Res. 2024, 14, 15433–15438. [Google Scholar] [CrossRef]
- Sarwinda, D.; Paradisa, R.H.; Bustamam, A.; Anggia, P. Deep learning in image classification using residual network (resnet) variants for detection of colorectal cancer. Procedia Comput. Sci. 2021, 179, 423–431. [Google Scholar] [CrossRef]
- Kern, R.; Al-Ubaidi, T.; Sabol, V.; Krebs, S.; Khodachenko, M.; Scherf, M. Astro- and geoinformatics–visually guided classification of time series data. In Knowledge Discovery in Big Data from Astronomy and Earth Observation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 267–282. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Y.; Zhu, A. A Few-shot Learning algorithm based on attention adaptive mechanism. J. Phys. Conf. Ser. 2021, 1966, 012011. [Google Scholar] [CrossRef]
- Wang, H.; Tian, S.; Fu, Y.; Zhou, J.; Liu, J.; Chen, D. Feature augmentation based on information fusion rectification for few-shot image classification. Sci. Rep. 2023, 13, 3607. [Google Scholar] [CrossRef]
- Lahitani, A.R.; Permanasari, A.E.; Setiawan, N.A. Cosine similarity to determine similarity measure: Study case in online essay assessment. In Proceedings of the 2016 4th International Conference on Cyber and IT Service Management, Bandung, Indonesia, 26–27 April 2016. [Google Scholar] [CrossRef]
- Rajput, A.S.; Shukla, S.; Thakur, S.S. Cosine similarity measures of (m, n)-rung orthopair fuzzy sets and their applications in plant leaf disease classification. Symmetry 2023, 15, 1385. [Google Scholar] [CrossRef]
- Javidan, S.M. Identifying plant pests and diseases with artificial intelligence: A short comment. Int. J. Eng. Technol. Inform. 2023, 4, 1–2. [Google Scholar] [CrossRef]
- Mohammadi, P.; Asefpour Vakilian, K. Machine learning provides specific detection of salt and drought stresses in cucumber based on miRNA characteristics. Plant Methods 2023, 19, 123. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Porto, J.V.; Dorsa, A.C.; de Moraes Weber, V.A.; de Andrade Porto, K.R.; Pistori, H. Usage of few-shot learning and meta-learning in agriculture: A literature review. Smart Agric. Technol. 2023, 5, 100307. [Google Scholar] [CrossRef]
- Lin, H.; Tse, R.; Tang, S.-K.; Qiang, Z.; Pau, G. Few-shot learning for plant-disease recognition in the frequency domain. Plants 2022, 11, 2814. [Google Scholar] [CrossRef]
- Saad, M.H.; Salman, A.E. A plant disease classification using one-shot learning technique with field images. Multimed. Tools Appl. 2023, 83, 58935–58960. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Asefpour Vakilian, K.; Ampatzidis, Y. Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning. Smart Agric. Technol. 2023, 3, 100081. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Rahnama, K.; Asefpour Vakilian, K.; Ampatzidis, Y. Feature engineering to identify plant diseases using image processing and artificial intelligence: A comprehensive review. Smart Agric. Technol. 2024, 8, 100480. [Google Scholar] [CrossRef]
- Borhani, Y.; Khoramdel, J.; Najafi, E. A deep learning based approach for automated plant disease classification using vision transformer. Sci. Rep. 2022, 12, 11554. [Google Scholar] [CrossRef]
- Wu, Q.; Ma, X.; Liu, H.; Bi, C.; Yu, H.; Liang, M.; Zhang, J.; Li, Q.; Tang, Y.; Ye, G. A classification method for soybean leaf diseases based on an improved ConvNeXt model. Sci. Rep. 2023, 13, 19141. [Google Scholar] [CrossRef]
- Prasad, K.V.; Vaidya, H.; Rajashekhar, C.; Karekal, K.S.; Sali, R.; Nisar, K.S. Multiclass classification of diseased grape leaf identification using deep convolutional neural network (DCNN) classifier. Sci. Rep. 2024, 14, 9002. [Google Scholar] [CrossRef] [PubMed]
- Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep learning for tomato diseases: Classification and symptoms visualization. Appl. Artif. Intell. 2017, 31, 299–315. [Google Scholar] [CrossRef]
- Rangarajan, A.K.; Purushothaman, R.; Ramesh, A. Tomato crop disease classification using pre-trained deep learning algorithm. Procedia Comput. Sci. 2018, 133, 1040–1047. [Google Scholar] [CrossRef]
- Karthik, R.; Hariharan, M.; Anand, S.; Mathikshara, P.; Johnson, A.; Menaka, R. Attention embedded residual CNN for disease detection in tomato leaves. Appl. Soft Comput. 2020, 86, 105933. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, G.; Chen, A.; Yi, J.; Zhang, W.; Hu, Y. Identification of tomato leaf diseases based on combination of ABCK-BWTR and B-ARNet. Comput. Electron. Agric. 2020, 178, 105730. [Google Scholar] [CrossRef]
- Nazari, K.; Ebadi, M.J.; Berahmand, K. Diagnosis of alternaria disease and leafminer pest on tomato leaves using image processing techniques. J. Sci. Food Agric. 2022, 102, 6907–6920. [Google Scholar] [CrossRef]
- Zeng, W. Image data augmentation techniques based on deep learning: A survey. Math. Biosci. Eng. 2024, 21, 6190–6224. [Google Scholar] [CrossRef]
- Yao, J.; Tran, S.N.; Sawyer, S.; Garg, S. Machine learning for leaf disease classification: Data, techniques and applications. Artif. Intell. Rev. 2023, 56, 3571–3616. [Google Scholar] [CrossRef]
- Sarkar, C.; Gupta, D.; Gupta, U.; Hazarika, B.B. Leaf disease detection using machine learning and deep learning: Review and challenges. Appl. Soft Comput. 2023, 145, 110534. [Google Scholar] [CrossRef]
- Jain, S.; Jaidka, P.; Jain, V. Plant leaf disease classification using deep learning based hybrid approach. In Proceedings of the 2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI), Greater Noida, India, 23–25 November 2023. [Google Scholar] [CrossRef]
- Moghadam, P.; Ward, D.; Goan, E.; Jayawardena, S.; Sikka, P.; Hernandez, E. Plant disease detection using hyperspectral imaging. In Proceedings of the 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney, NSW, Australia, 29 November–1 December 2017. [Google Scholar] [CrossRef]
- Abdulridha, J.; Batuman, O.; Ampatzidis, Y. UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sens. 2019, 11, 1373. [Google Scholar] [CrossRef]
- Feng, L.; Wu, B.; He, Y.; Zhang, C. Hyperspectral imaging combined with deep transfer learning for rice disease detection. Front. Plant Sci. 2021, 12, 693521. [Google Scholar] [CrossRef] [PubMed]
- Albattah, W.; Nawaz, M.; Javed, A.; Masood, M.; Albahli, S. A novel deep learning method for detection and classification of plant diseases. Complex Intell. Syst. 2021, 8, 507–524. [Google Scholar] [CrossRef]
- Zhang, X.; Vinatzer, B.A.; Li, S. Hyperspectral Imaging Analysis for the Early Detection of Tomato Bacterial Leaf Spot Disease; Research Square Platform LLC: Durham, NC, USA, 2023. [Google Scholar] [CrossRef]
- Qi, H.; Li, H.; Chen, L.; Chen, F.; Luo, J.; Zhang, C. Hyperspectral imaging using a convolutional neural network with transformer for the soluble solid content and pH prediction of cherry tomatoes. Foods 2024, 13, 251. [Google Scholar] [CrossRef] [PubMed]
Dataset | Method | Disease Type | Accuracy | Reference |
---|---|---|---|---|
PlantVillage | CNN | Tomato fungal, viral, and bacterial diseases | 99% | [35] |
PlantVillage | AlexNet | Tomato fungal diseases | 97% | [36] |
PlantVillage | VGG Net | Tomato fungal, viral, and bacterial diseases | 97% | [36] |
PlantVillage | Residual CNN | Tomato fungal, viral, and bacterial diseases | 98% | [37] |
Hunan Vegetable Institute | B-ARNet | Tomato fungal, viral, and bacterial diseases | 89% | [38] |
PlantVillage | ANFIS | Tomato fungal, viral, and bacterial diseases | 98% | [39] |
Prepared in this work | Few-shot learning | Tomato fungal diseases | 96% | Proposed method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javidan, S.M.; Ampatzidis, Y.; Banakar, A.; Asefpour Vakilian, K.; Rahnama, K. Tomato Fungal Disease Diagnosis Using Few-Shot Learning Based on Deep Feature Extraction and Cosine Similarity. AgriEngineering 2024, 6, 4233-4247. https://doi.org/10.3390/agriengineering6040238
Javidan SM, Ampatzidis Y, Banakar A, Asefpour Vakilian K, Rahnama K. Tomato Fungal Disease Diagnosis Using Few-Shot Learning Based on Deep Feature Extraction and Cosine Similarity. AgriEngineering. 2024; 6(4):4233-4247. https://doi.org/10.3390/agriengineering6040238
Chicago/Turabian StyleJavidan, Seyed Mohamad, Yiannis Ampatzidis, Ahmad Banakar, Keyvan Asefpour Vakilian, and Kamran Rahnama. 2024. "Tomato Fungal Disease Diagnosis Using Few-Shot Learning Based on Deep Feature Extraction and Cosine Similarity" AgriEngineering 6, no. 4: 4233-4247. https://doi.org/10.3390/agriengineering6040238
APA StyleJavidan, S. M., Ampatzidis, Y., Banakar, A., Asefpour Vakilian, K., & Rahnama, K. (2024). Tomato Fungal Disease Diagnosis Using Few-Shot Learning Based on Deep Feature Extraction and Cosine Similarity. AgriEngineering, 6(4), 4233-4247. https://doi.org/10.3390/agriengineering6040238