Various Cultivars of Citrus Fruits: Effects of Construction on Gas Diffusion Resistance and Internal Gas Concentration of Oxygen and Carbon Dioxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Measuring Gas Diffusion Resistance and Construction Characteristics for Cultivars of Citrus Fruit
2.2.1. Ethane Efflux Method for Calculation of Gas Diffusion Resistance
2.2.2. Measuring Construction Characteristics
2.2.3. Calculation of Gas Diffusion Resistance
2.3. Measurement of Internal Gas Components Related to the Respiration for Cultivars of Citrus Fruit
2.4. Statistical Analysis
3. Results and Discussions
3.1. Gas Diffusion Resistance for Seven Citrus Fruit Cultivars
3.2. Fluctuation in Internal Gas Concentration in the Fruits of Citrus Unshu “Nankan No.20” During Storage
3.3. Comparison of Internal Gas Concentration Among Seven Cultivars of Citrus Fruits
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kader, A.A.; Saltveit, M.E. Postharvest Physiology and Pathology of Vegetables; CRC Press: Boca Raton, FL, USA, 2002; pp. 7–29. [Google Scholar]
- Saltveit, M.E. Postharvest Physiology and Biochemistry of Fruits and Vegetables; Woodhead Publishing: Cambridge, UK, 2019; pp. 73–91. [Google Scholar]
- Hikida, Y.; Morimatsu, K. Prediction Method of O2 and CO2 Concentrations in the Intercellular Space of Fresh Produce. Mem. Coll. Agric. Ehime Univ. 2018, 62, 5–11. [Google Scholar]
- Ho, Q.T.; Verlinden, B.E.; Verboven, P.; Vandewalle, S.; Nicolaï, B.M. A permeation–diffusion–reaction model of gas transport in cellular tissue of plant materials. J. Exp. Bot. 2006, 57, 4215–4224. [Google Scholar] [CrossRef]
- Lammertyn, J.; Scheerlinck, N.; Jancsók, P.; Verlinden, B.E.; Nicolaï, B.M. A respiration-diffusion model for ‘Conference’ pears I: Model development and validation. Postharvest Biol. Technol. 2003, 30, 29–42. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Hertog, M.L.A.T.M.; Ho, Q.T.; Verlinden, B.E.; Verboven, P. Modified and Controlled Atmosphere for the Storage, Transpiration and Packaging of Horticultural Commodities; CRC Press: Boca Raton, FL, USA, 2009; pp. 93–110. [Google Scholar]
- Rajapakse, N.C.; Banks, N.H.; Hewett, E.W.; Cleland, D.J. Development of Oxygen Concentration Gradients in Flesh Tissues of Bulky Plant Organs. J. Am. Soc. Hortic. Sci. 1990, 115, 793–797. [Google Scholar] [CrossRef]
- Banks, N.H. Estimating skin resistance to gas diffusion in apples and potatoes. J. Exp. Bot. 1985, 36, 1842–1850. [Google Scholar] [CrossRef]
- Cameron, A.C.; Yang, S.F. A Simple Method for the Determination of Resistance to Gas Diffusion in Plant Organs. Plant Physiol. 1982, 70, 21–23. [Google Scholar] [CrossRef]
- Dadzie, B.K.; Banks, N.H.; Cleland, D.J.; Hewett, E.W. Role of Skin Resistance to Gas Diffusion in the Response of Fruits to Modified Atmospheres. ISHS Acta Hortic. 1993, 343, 129–134. [Google Scholar] [CrossRef]
- Dirpan, A.; Hikida, Y.; Morimatsu, K. Improving the Measurement of Resistance to Gas Diffusion and the Resistance Characteristics in Citrus Iyo Fruit (Citrus iyo Hort. ex Tanaka). Food Preserv. Sci. 2016, 42, 71–77. [Google Scholar] [CrossRef]
- Rezagah, M.E.; Ishida, S.; Tanaka, F.; Uchino, T.; Hamanaka, D.; Hikida, Y. Determination of Gas Diffusivity and Skin Resistance for Three Cultivars of Japanese Pear Using their Actual 3D Geometry. Environ. Control Biol. 2013, 51, 193–200. [Google Scholar] [CrossRef]
- Banks, N.H.; Kays, S.J. Measuring Internal Gases and Lenticel Resistance to Gas Diffusion in Potato Tubers. J. Am. Soc. Hortic. Sci. 1988, 113, 577–580. [Google Scholar] [CrossRef]
- Piga, A.; D’Aquino, S.; Agabbio, M. Evolution of respiration rate, internal CO2 or O2 and resistance to gas diffusion of anaerobic exposed and waxed ‘Miho’ satsuma fruits during market life. Adv. Hortic. Sci. 1998, 12, 132–137. [Google Scholar]
- Schotsmans, W.; Verlinden, B.E.; Lammertyn, J.; Nicolaï, B.M. The relationship between gas transport properties and the histology of apple. Sci. Food Agric. 2004, 84, 1131–1140. [Google Scholar] [CrossRef]
- Valle-Guadarrama, S.; Saucedo-Veloz, C.; Penña-Valdivia, C.B.; Corrales-García, J.J.E.; Chávez-Franco, S.H.; Espinosa-Solares, T. Skin Permeance and Internal Gas Composition in ‘Hass’ Avocado (Persea americana Mill.) Fruits. Food Sci. Technol. Int. 2002, 8, 365–373. [Google Scholar]
- Yoo, K.S.; Andersen, C.R.; Pike, L.M. Internal CO2 concentrations in onion bulbs at different storage temperatures and in response to sealing of the neck and base. Postharvest Biol. Technol. 1997, 12, 157–163. [Google Scholar]
- Paul, V.; Pandey, R. Role of internal atmosphere on fruit ripening and storability—A review. J. Food Sci. Technol. 2014, 51, 1223–1250. [Google Scholar] [CrossRef]
- Dirpan, A.; Hikida, Y. Effect of various citrus sizes on the resistance to gas diffusion. Procedia Environ. Sci. 2015, 28, 391–398. [Google Scholar] [CrossRef]
- Pham, Q.T.; Schotsmans, W.; Ho, Q.T.; Verlinden, B.; Verboven, P.; Nicolai, B. Simultaneous measurement of neon diffusivity and skin resistance of ‘Braeburn’ and ‘Jonica’ apples. Postharvest Biol. Technol. 2008, 50, 53–63. [Google Scholar] [CrossRef]
- Hagenmaier, R.D.; Shaw, P.E. Gas Permeability of Fruit Coating Waxes. Am. Soc. Hortic. Sci. 1992, 117, 105–109. [Google Scholar] [CrossRef]
- Ben-Yehoshua, S.; Burg, S.P.; Young, R. Resistance of citrus fruit to mass transport of water vapor and other gases. Plant Physiol. 1985, 79, 1048–1053. [Google Scholar] [CrossRef]
- Xiao, H.; Piovesan, A.; Pols, S.; Verboven, P.; Nicolaï, B. Microstructural changes enhance oxygen transport in tomato (Solanum lycopersicum) fruit during maturation and ripening. New Phytol. 2021, 232, 1893–2219. [Google Scholar] [CrossRef]
- Verboven, P.; Kerckhofs, G.; Mebatsion, H.K.; Ho, Q.T.; Temst, K.; Wevers, M.; Cloetens, P.; Nicolaï, B.M. Three-Dimensional Gas Exchange Pathways in Pome Fruit Characterized by Synchrotron X-ray Computed Tomography. Plant Physiol. 2008, 147, 518–527. [Google Scholar] [CrossRef] [PubMed]
Cultivars | Weight | Apparent Volume | Internal Void Volume | Surface Dimension |
---|---|---|---|---|
C. spp “Shiranui” | 216.4 ± 21.3 | 211.1 ± 16.8 | 33.5 ± 3.2 | 156.0 ± 15.8 |
C. unshu “Nankan No.20” | 160.8 ± 5.0 | 175.7 ± 12.6 | 42.7 ± 10.0 | 141.0 ± 14.4 |
C. spp “Harehime” | 172.1 ± 17.2 | 185.4 ± 22.4 | 41.9 ± 10.0 | 171.0 ± 28.4 |
C. iyo “Miyauchi iyokan” | 228.8 ± 12.1 | 263.8 ± 8.4 | 72.8 ± 6.3 | 190.3 ± 12.7 |
C. spp “Setoka” | 201.8 ± 11.7 | 191.1 ± 12.6 | 23.6 ± 4.0 | 146.9 ± 11.8 |
C. spp “Ehime Kashi No.28” | 212.2 ± 17.1 | 199.1 ± 17.5 | 21.5 ± 3.9 | 139.4 ± 11.2 |
C. spp “Kanpei” | 217.5 ± 37.0 | 218.4 ± 19.0 | 26.9 ± 7.9 | 171.9 ± 17.8 |
Internal Gas Volume in Visible Observation | CO2 Concentration | O2 Concentration | |
---|---|---|---|
Unpeeled fruit | 20–30 mL | 4.1 ± 0.6% | 18.7 ± 0.8% |
Peeled fruit | 3–5 mL | 6.0 ± 1.0% | 18.0 ± 1.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morimatsu, K.; Konagaya, K. Various Cultivars of Citrus Fruits: Effects of Construction on Gas Diffusion Resistance and Internal Gas Concentration of Oxygen and Carbon Dioxide. AgriEngineering 2024, 6, 4267-4279. https://doi.org/10.3390/agriengineering6040240
Morimatsu K, Konagaya K. Various Cultivars of Citrus Fruits: Effects of Construction on Gas Diffusion Resistance and Internal Gas Concentration of Oxygen and Carbon Dioxide. AgriEngineering. 2024; 6(4):4267-4279. https://doi.org/10.3390/agriengineering6040240
Chicago/Turabian StyleMorimatsu, Kazuya, and Keiji Konagaya. 2024. "Various Cultivars of Citrus Fruits: Effects of Construction on Gas Diffusion Resistance and Internal Gas Concentration of Oxygen and Carbon Dioxide" AgriEngineering 6, no. 4: 4267-4279. https://doi.org/10.3390/agriengineering6040240
APA StyleMorimatsu, K., & Konagaya, K. (2024). Various Cultivars of Citrus Fruits: Effects of Construction on Gas Diffusion Resistance and Internal Gas Concentration of Oxygen and Carbon Dioxide. AgriEngineering, 6(4), 4267-4279. https://doi.org/10.3390/agriengineering6040240