Using Machine Learning to Propose a Qualitative Classification of Risk of Soil Erosion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
2.3. Cluster
2.4. Projection Pursuit
3. Results
3.1. Visual Analysis of Soil Erosion Modeling Input Data and Detection of Possible Outliers
3.2. Proposals for Soil Erosion Risk Classes
3.3. Application of Discriminant Vectors for Soil Erosion Risk Class
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization [FAO]; United Nations Environment Programme [PNUMA]; United Nations Educational, Scientific and Cultural Organization [UNESCO]. Metodología Provisional para la Evaluación de la Degradación de Los Suelos. Technical Report. 1981. Available online: https://catalogosiidca.csuca.org/Record/UCR.000142550/Description (accessed on 22 June 2023).
- Bertoni, J.; Lombardi Neto, F. Conservação do Solo, 10th ed.; Ícone: São Paulo, Brazil, 2017; 392p. [Google Scholar]
- Alves, W.S.; Martins, A.P.; Morais, W.A.; Pôssa, É.M.; Castro, R.M.; Moura, D.M.B. USLE modelling of soil loss in a Brazilian cerrado catchment. Remote Sens. Appl. Soc. Environ. 2022, 27, 100788. [Google Scholar] [CrossRef]
- Castro, R.M.; Alves, W.S.; Marcionilio, S.M.L.O.; Moura, D.M.B.; Oliveira, D.M.S. Soil losses related to land use and rainfall seasonality in a watershed in the Brazilian Cerrado. J. S. Am. Earth Sci. 2022, 119, 104020. [Google Scholar] [CrossRef]
- Cunha, E.R.; Santos, C.A.G.; Silva, R.M.; Panachuki, E.; Oliveira, P.T.S.; Oliveira, N.S.; Falcão, K.S. Assessment of current and future land use/cover changes in soil erosion in the Rio da Prata basin (Brazil). Sci. Total Environ. 2022, 818, 151811. [Google Scholar] [CrossRef] [PubMed]
- Botelho, T.H.; Jácomo, S.D.A.; Almeida, R.T.; Griebeler, N.P. Use of USLE/GIS technology for identifying criteria for monitoring soil erosion losses in agricultural areas. Eng. Agric. 2018, 38, 13–21. [Google Scholar] [CrossRef]
- Durães, M.F.; Coelho Filho, J.A.P.; Oliveira, V.A.D. Water erosion vulnerability and sediment delivery rate in upper Iguaçu river basin–Paraná. RBRH 2016, 21, 728–741. [Google Scholar] [CrossRef]
- Durães, M.F.; Mello, C.R.D. Distribuição espacial da erosão potencial e atual do solo na Bacia Hidrográfica do Rio Sapucaí, MG. Eng. Sanit. Ambient. 2016, 21, 677–685. [Google Scholar] [CrossRef]
- Miranda, R.B.; Scarpinella, G.D.A.; Silva, R.S.; Mauad, F.F. Water erosion in Brazil and in the world: A brief review. Mod. Environ. Sci. Eng. 2015, 1, 17–26. [Google Scholar] [CrossRef]
- Couto Júnior, A.A.; Conceição, F.T.; Fernandes, A.M.; Spatti Junior, E.P.; Lupinacci, C.M.; Moruzzi, R.B. Land use changes associated with the expansion of sugar cane crops and their influences on soil removal in a tropical watershed in São Paulo State (Brazil). Catena 2019, 172, 313–323. [Google Scholar] [CrossRef]
- Vieira, A.S.; Valle Junior, R.F.; Rodrigues, V.S.; Quinaia, T.L.S.; Mendes, R.G.; Valera, C.A.; Fernandes, L.F.S.; Pacheco, F.A.L. Estimating water erosion from the brightness index of orbital images: A framework for the prognosis of degraded pastures. Sci. Total Environ. 2021, 776, 146019. [Google Scholar] [CrossRef]
- Weiler, E.B.; Tamiosso, M.F.; Cruz, J.C.; Reichert, J.M.; Schorr, L.P.B.; Mantovanelli, B.C.; Santos, F.D.; Fantinel, R.A.; Baumhardt, E. Integrated Environmental Management and Planning based on Soil Erosion Susceptibility Scenarios. An. Acad. Bras. Ciênc. 2021, 93, e20191120. [Google Scholar] [CrossRef]
- Pinto, G.S.; Servidoni, L.E.; Lense, G.H.E.; Moreira, R.S.; Mincato, R.L. Estimativa das perdas de solo por erosão hídrica utilizando o Método de Erosão Potencial. Rev. Dep. Geogr. 2020, 39, 62–71. [Google Scholar] [CrossRef]
- Rodrigues, V.S.; Valle Júnior, R.F.; Fernandes, L.F.S.; Pacheco, F.A.L. The assessment of water erosion using Partial Least Squares-Path Modeling: A study in a legally protected area with environmental land use conflicts. Sci. Total Environ. 2019, 691, 1225–1241. [Google Scholar] [CrossRef]
- Batista, P.V.G.; Silva, M.L.N.; Silva, B.P.C.; Curi, N.; Bueno, I.T.; Acérbi Júnior, F.W.; Davies, J.; Quinton, J. Modelling spatially distributed soil losses and sediment yield in the upper Grande River Basin-Brazil. Catena 2017, 157, 139–150. [Google Scholar] [CrossRef]
- Ayer, J.E.B.; Olivetti, D.; Mincato, R.L.; Silva, M.L.N. Erosão hídrica em Latossolos Vermelhos distróficos. Pesq. Agropec. Trop. 2015, 45, 180–191. [Google Scholar] [CrossRef]
- Beskow, S.; Mello, C.R.; Norton, L.D.; Curi, N.; Viola, M.R.; Avanzi, J.C. Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena 2009, 79, 49–59. [Google Scholar] [CrossRef]
- Galdino, S.; Sano, E.E.; Andrade, R.G.; Grego, C.R.; Nogueira, S.F.; Bragantini, C.; Flosi, A.H. Large-scale modeling of soil erosion with RUSLE for conservationist planning of degraded cultivated Brazilian pastures. Land Degrad. Dev. 2016, 27, 773–784. [Google Scholar] [CrossRef]
- Salis, H.H.C.; Costa, A.M.; Viana, J.H.M. Estimativa da perda anual de solos na bacia hidrográfica do Córrego Marinheiro, Sete Lagoas-MG, por meio da RUSLE. Bol. Geogr. 2019, 37, 101–115. [Google Scholar] [CrossRef]
- Gomes, L.; Simões, S.J.; Dalla Nora, E.L.; Sousa-Neto, E.R.; Forti, M.C.; Ometto, J.P.H. Agricultural expansion in the Brazilian Cerrado: Increased soil and nutrient losses and decreased agricultural productivity. Land 2019, 8, 12. [Google Scholar] [CrossRef]
- Avanzi, J.C.; Silva, M.L.N.; Curi, N.; Norton, L.D.; Beskow, S.; Martins, S.G. Spatial distribution of water erosion risk in a watershed with eucalyptus and Atlantic Forest. Ciênc. Agrotec. 2013, 37, 427–434. [Google Scholar] [CrossRef]
- Resende, M.; Curi, N.; Rezende, S.B.; Corrêa, G.F.; Ker, J.C. Pedologia: Base Para Distinção de Ambientes, 6th ed.; Editora UFLA: Lavras, Brazil, 2014; 378p. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Soil Erosion by Water: Some Measures for Its Control on Cultivated Lands; FAO: Rome, Italy, 1965; 284p. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Cardoso, D.P. Rainfall Erosivity Estimation via Several Methods, and Water Erosion Modeling at Peixe Angical Reservoir-TO. Ph.D. Thesis, University Federal of Lavras, Lavras, Brazil, 2021. [Google Scholar]
- Rencher, A.C.; Christensen, W.F. Methods of Multivariate Analysis, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; 781p. [Google Scholar]
- Friedman, J.H.; Tukey, J.W. A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. 1974, 23, 881–890. [Google Scholar] [CrossRef]
- Espezua, S.; Villanueva, E.; Maciel, C.D.; Carvalho, A. A projection pursuit framework for supervised dimension reduction of high dimensional small sample datasets. Neurocomputing 2015, 149, 767–776. [Google Scholar] [CrossRef]
- Hastie, T.; Buja, A.; Tibshirani, R. Penalized discriminant analysis. Ann. Statist. 1995, 23, 73–102. [Google Scholar] [CrossRef]
- Lee, E.K.; Cook, D. A projection pursuit index for large p small n data. Stat. Comput. 2010, 20, 381–392. [Google Scholar] [CrossRef]
- Pena, D.; Prieto, F. Cluster identification using projections. J. Am. Stat. Assoc. 2001, 96, 1433–1445. [Google Scholar] [CrossRef]
- Ossani, P.C.; Cirillo, M.A. MVar: Multivariate Analysis. Available online: https://cran.r-project.org/web/packages/MVar/index.html (accessed on 22 June 2023).
- R Development Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 17 September 2023).
Instances | Factors for USLE Modeling | Classes | |||
---|---|---|---|---|---|
R | K | LS | C | ||
1 | 1 | ||||
2 | 2 | ||||
50,108 | 7 | ||||
value of the ith instance (observation) of the jth attribute. |
Classes | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Totals | 8.238 | 7.910 | 6.187 | 8.412 | 10.964 | 5.872 | 2.525 |
Limits | Factor Ranges of the USLE | ||||
---|---|---|---|---|---|
R | K | LS | C | Classes | |
MJ mm ha−1 h−1 year−1 | Mg h MJ−1 mm−1 | Dimensionless | |||
Minimum | 7074.14 | 0.0090 | <1 | 0.001 | 1 |
Maximum | 7684.94 | 0.0567 | >20 | 0.500 | 1 |
Minimum | 7683.45 | 0.0032 | <1 | 0.001 | 2 |
Maximum | 8265.08 | 0.0567 | >20 | 0.500 | 2 |
Minimum | 8265.26 | 0.0032 | <1 | 0.001 | 3 |
Maximum | 8779.61 | 0.0567 | >20 | 0.500 | 3 |
Minimum | 8780.08 | 0.0032 | <1 | 0.001 | 4 |
Maximum | 9289.02 | 0.0567 | >20 | 0.500 | 4 |
Minimum | 9284.97 | 0.0032 | <1 | 0.001 | 5 |
Maximum | 9853.04 | 0.0355 | >20 | 0.500 | 5 |
Minimum | 9853.33 | 0.0090 | <1 | 0.001 | 6 |
Maximum | 10,855.87 | 0.0355 | >20 | 0.500 | 6 |
Minimum | 10,856.77 | 0.0090 | <1 | 0.001 | 7 |
Maximum | 11,966.68 | 0.0567 | >20 | 0.500 | 7 |
Classe | Sensitivity | Specificity | ROC Area | FP Rate | FN Rate | F-Score |
---|---|---|---|---|---|---|
1 | 0.9987 | 0.9992 | 0.9989 | 0.0008 | 0.0013 | 0.9972 |
2 | 0.9653 | 0.9933 | 0.9793 | 0.0067 | 0.0347 | 0.9661 |
3 | 0.9989 | 0.9858 | 0.9924 | 0.0142 | 0.0011 | 0.9748 |
4 | 0.9905 | 1.0000 | 0.9952 | 0.0000 | 0.0095 | 0.9950 |
5 | 0.9297 | 0.9957 | 0.9644 | 0.0010 | 0.0703 | 0.9601 |
6 | 0.9956 | 0.9957 | 0.9957 | 0.0043 | 0.0044 | 0.9865 |
7 | 0.9477 | 0.9995 | 0.9736 | 0.0005 | 0.0523 | 0.9711 |
Classes | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1 | 8227 | 0 | 0 | 0 | 0 | 11 | 0 |
2 | 0 | 8120 | 249 | 0 | 43 | 0 | 0 |
3 | 0 | 12 | 10,952 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 2501 | 0 | 0 | 24 |
5 | 0 | 266 | 0 | 0 | 5752 | 169 | 0 |
6 | 35 | 0 | 0 | 0 | 0 | 7875 | 0 |
7 | 0 | 0 | 306 | 1 | 0 | 0 | 5565 |
Total | 8262 | 8398 | 11,507 | 2502 | 5795 | 8055 | 5589 |
Number of hits | 8227 | 8120 | 10,952 | 2501 | 5752 | 7875 | 5565 |
Proportion of hits | 0.9957 | 0.9669 | 0.9518 | 0.9996 | 0.9926 | 0.9777 | 0.9957 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, D.P.; Ossani, P.C.; Cirillo, M.A.; Silva, M.L.N.; Avanzi, J.C. Using Machine Learning to Propose a Qualitative Classification of Risk of Soil Erosion. AgriEngineering 2024, 6, 4280-4293. https://doi.org/10.3390/agriengineering6040241
Cardoso DP, Ossani PC, Cirillo MA, Silva MLN, Avanzi JC. Using Machine Learning to Propose a Qualitative Classification of Risk of Soil Erosion. AgriEngineering. 2024; 6(4):4280-4293. https://doi.org/10.3390/agriengineering6040241
Chicago/Turabian StyleCardoso, Dione Pereira, Paulo Cesar Ossani, Marcelo Angelo Cirillo, Marx Leandro Naves Silva, and Junior Cesar Avanzi. 2024. "Using Machine Learning to Propose a Qualitative Classification of Risk of Soil Erosion" AgriEngineering 6, no. 4: 4280-4293. https://doi.org/10.3390/agriengineering6040241
APA StyleCardoso, D. P., Ossani, P. C., Cirillo, M. A., Silva, M. L. N., & Avanzi, J. C. (2024). Using Machine Learning to Propose a Qualitative Classification of Risk of Soil Erosion. AgriEngineering, 6(4), 4280-4293. https://doi.org/10.3390/agriengineering6040241