Efficient UAV-Based Automatic Classification of Cassava Fields Using K-Means and Spectral Trend Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Acquisition of Data
2.2. Develop the Proposed Classification Process
2.2.1. Composite Image Preparation for Classification
Index | Equation | Dominant Application |
---|---|---|
Excess Red (ExR) [26] | red spectrum extraction | |
Excess Green (ExG) [27] | green spectrum extraction | |
Excess Blue (ExB) [28] | blue spectrum extraction | |
Excess Green minus Excess Red (ExGR) [29] | highlight vegetation | |
Normalized Green Red Difference Index (NGRDI) [30] | vegetation discrimination | |
Green Leaf Index (GLI) [31] | vegetation discrimination | |
Visual Atmospheric Resistance Index (VARI) [32] | vegetation discrimination | |
Brightness Index (BI) [33] | soil discrimination | |
Color Index (CI) [34] | soil discrimination |
2.2.2. Optimizing Mean-Shift Algorithm Parameters for Image Classification
2.2.3. Clustering
2.2.4. Spectral Trend Analysis and Labeling
2.2.5. Adjusting and Validating
2.2.6. Applying the Classification
3. Results
3.1. Influence of Input and Parameters on Classification Accuracy
3.2. Labeling Rules
3.3. Validation of the Classification: Comparison with Traditional Methods
3.4. Application of the Classification: Results from Different Study Areas
4. Discussion
4.1. Input Combination as the Impact of Selection and Labeling Rules
4.2. Filtering Parameters
4.3. Proposed Classification Process Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Office of Agricultural Economics. Agricultural Utilized Areas by Province, Year 2019. 2019. Available online: https://www.oae.go.th/assets/portals/1/files/socio/LandUtilization2562.pdf (accessed on 15 May 2024).
- FAO. How to Feed the World in 2050—High-Level Expert Forum. Rome, 12–13 October 2009. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 15 May 2024).
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A Meta-Analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Fried, G.; Chauvel, B.; Reynaud, P.; Sache, I. Decreases in Crop Production by Non-Native Weeds, Pests, and Pathogens. In Impact of Biological Invasions on Ecosystem Services; Vilà, M., Hulme, P.E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 83–101. [Google Scholar]
- Jeamjamnanja, J.; Phuddacharoen, S.; Pulsa-nguan, P.; Rojanaridpiched, C.; Saengkaewsuk, W. Timing of Weed Control in Cassava. Weeds 1984, 2, 144–147. [Google Scholar]
- Onochie, B.E. Critical Periods for Weed Control in Cassava in Nigeria. PANS Pest. Arctic. News Sum. 1975, 21, 54–57. [Google Scholar] [CrossRef]
- Marin-Morales, M.A.; Ventura-Camargo, B.D.C.; Hoshina, M.M. Toxicity of Herbicides: Impact on Aquatic and Soil Biota and Human Health. In Herbicides—Current Research and Case Studies in Use; Andrew, J.P., Jessica, A.K., Eds.; InTech: London, UK, 2013; ISBN 978-953-51-1112-2. [Google Scholar]
- Miller, P.C. Patch Spraying: Future Role of Electronics in Limiting Pesticide Use. Pest Manag. Sci. 2003, 59, 566–574. [Google Scholar] [CrossRef]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; The Guilford Press: New York, NY, USA, 2011; ISBN 978-1-60918-176-5. [Google Scholar]
- Foody, G.M.; Mathur, A. Toward Intelligent Training of Supervised Image Classifications: Directing Training Data Acquisition for SVM Classification. Remote Sens. Environ. 2004, 93, 107–117. [Google Scholar] [CrossRef]
- Ge, Y.; Bai, H.; Wang, J.; Cao, F. Assessing the Quality of Training Data in the Supervised Classification of Remotely Sensed Imagery: A Correlation Analysis. J. Spat. Sci. 2012, 57, 29–45. [Google Scholar] [CrossRef]
- Haq, M.A.; Rahaman, G.; Baral, P.; Ghosh, A. Deep Learning Based Supervised Image Classification Using UAV Images for Forest Areas Classification. J. Indian Soc. Remote Sens. 2021, 49, 601–606. [Google Scholar] [CrossRef]
- Zhang, J.; Qiang, Z.; Lin, H.; Chen, Z.; Li, K.; Zhang, S. Research on Tobacco Field Semantic Segmentation Method Based on Multispectral Unmanned Aerial Vehicle Data and Improved PP-LiteSeg Model. Agronomy 2024, 14, 1502. [Google Scholar] [CrossRef]
- Nguyen, C.; Sagan, V.; Bhadra, S.; Moose, S. UAV Multisensory Data Fusion and Multi-Task Deep Learning for High-Throughput Maize Phenotyping. Sensors 2023, 23, 1827. [Google Scholar] [CrossRef]
- Pérez-Ortiz, M.; Peña, J.M.; Gutiérrez, P.A.; Torres-Sánchez, J.; Hervás-Martínez, C.; López-Granados, F. A Semi-Supervised System for Weed Mapping in Sunflower Crops Using Unmanned Aerial Vehicles and a Crop Row Detection Method. Appl. Soft Comput. 2015, 37, 533–544. [Google Scholar] [CrossRef]
- Gašparović, M.; Zrinjski, M.; Barković, Đ.; Radočaj, D. An Automatic Method for Weed Mapping in Oat Fields Based on UAV Imagery. Comput. Electron. Agric. 2020, 173, 105385. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Roy, P.; Dutta, S.; Dey, N.; Dey, G.; Chakraborty, S.; Ray, R. Adaptive thresholding: A comparative study. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; pp. 1182–1186. [Google Scholar] [CrossRef]
- Boonrang, A.; Sritarapipat, T.; Piyatadsananon, P. Applicable Mean-Shift Filtering Parameters for Mapping Weed in Cassava Fields Based on UAV Images. In Proceedings of the 42nd Asian Conference on Remote Sensing (ACRS2021), Can Tho City, Vietnam, 22–24 November 2021; pp. 303–310. [Google Scholar]
- Hamuda, E.; Glavin, M.; Jones, E. A Survey of Image Processing Techniques for Plant Extraction and Segmentation in the Field. Comput. Electron. Agric. 2016, 125, 184–199. [Google Scholar] [CrossRef]
- Wang, Z.; Scott, D. Nonparametric Density Estimation for High-Dimensional Data—Algorithms and Applications. WIREs Comput. Stat. 2019, 11, e1461. [Google Scholar] [CrossRef]
- Comaniciu, D.; Meer, P. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Kohavi, R.; John, G.H. Wrappers for Feature Subset Selection. Artif. Intell. 1997, 97, 273–324. [Google Scholar] [CrossRef]
- Blum, A.L.; Langley, P. Selection of Relevant Features and Examples in Machine Learning. Artif. Intell. 1997, 97, 245–271. [Google Scholar] [CrossRef]
- OpenCV. pyrMeanShiftFiltering(), Image Filtering Module. 2024. Available online: https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#ga9fabdce9543bd602445f5db3827e4cc0 (accessed on 25 October 2024).
- Meyer, G.; Hindman, T.; Laksmi, K. Machine Vision Detection Parameters for Plant Species Identification. In Precision Agriculture and Biological Quality, Proceedings of the Photonics East (ISAM, VVDC, IEMB), Boston, MA, USA, 1–6 November 1998; SPIE: Bellingham, WA, USA, 1999; Volume 3543. [Google Scholar] [CrossRef]
- Woebbecke, D.; Meyer, G.; Bargen, K.; Mortensen, D. Color Indices for Weed Identification under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.J.; Burgos-Artizzu, X.P.; Ribeiro, A. Automatic Segmentation of Relevant Textures in Agricultural Images. Comput. Electron. Agric. 2011, 75, 75–83. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C. Verification of Color Vegetation Indices for Automated Crop Imaging Applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Mathieu, R.; Pouget, M.; Cervelle, B.; Escadafal, R. Relationships Between Satellite-Based Radiometric Indices Simulated Using Laboratory Reflectance Data and Typic Soil Color of an Arid Environment. Remote Sens. Environ. 1998, 66, 17–28. [Google Scholar] [CrossRef]
- Escadafal, R.; Huete, A. Improvement in Remote Sensing of Low Vegetation Cover in Arid Regions by Correcting Vegetation Indices for Soil “Noise”. C. R. Acad. Sci. Ser. II 1991, 312, 1385–1391. [Google Scholar]
- Fukunaga, K.; Hostetler, L. The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Trans. Inf. Theory 1975, 21, 32–40. [Google Scholar] [CrossRef]
- Song, N.; Gu, I.; Cao, Z.; Viberg, M. Enhanced Spatial-Range Mean Shift Color Image Segmentation by Using Convergence Frequency and Position. In Proceedings of the 2006 14th European Signal Processing Conference, Florence, Italy, 4–8 September 2006; pp. 1–5. [Google Scholar]
- Zhou, H.; Wang, X.; Schaefer, G. Mean Shift and Its Application in Image Segmentation. In Innovations Intelligent Image Analysis, Series: Studies in Computational Intelligence; Kwasnicka, H., Jain, L.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 291–312. ISBN 978-3-642-17934-1. [Google Scholar]
- Sun, J. A Fast MEANSHIFT Algorithm-Based Target Tracking System. Sensors 2012, 12, 8218–8235. [Google Scholar] [CrossRef]
- Morales, R.; Torres, E.; Sossa, H. Image Segmentation Based on an Iterative Computation of the Mean Shift Filtering for Different Values of Window Sizes. Int. J. Imaging Robot. 2011, 6, 1–19. [Google Scholar]
- Collins, R.T. Mean-Shift Blob Tracking Through Scale Space. In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003; pp. 234–240. [Google Scholar]
- Jain, A.K. Data Clustering: 50 Years Beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Xu, R.; Wunsch, D. Survey of Clustering Algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-7137-0. [Google Scholar]
- Celebi, M.E.; Kingravi, H.; Vela, P. A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm. Expert Syst. Appl. 2013, 40, 200–210. [Google Scholar] [CrossRef]
- Scikit-learn. KMeans, Clustering Module. Available online: https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.KMeans.html (accessed on 25 October 2024).
- Arthur, D.; Vassilvitskii, S. k-means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007; Society for Industrial and Applied Mathematics: New Orleans, LA, USA, 2007; pp. 1027–1035. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Virtanen, O.; Constantinidou, E.; Tyystjärvi, E. Chlorophyll Does Not Reflect Green Light—How to Correct a Misconception. J. Biol. Educ. 2022, 56, 552–559. [Google Scholar] [CrossRef]
Plot ID | Sensor | Taken Date | Cassava Canopy Diameter (cm) | Weed | Soil | Sample Site |
---|---|---|---|---|---|---|
Plot 1 | FC6310 | 28 April 2018 | 57.42 ± 8.25 | Scatter | Sandy soil | Sample Site 1 |
Plot 2 | FC6310 | 28 April 2018 | 52.11 ± 9.09 | Scatter | Sandy soil | Sample Site 2 |
Plot 3 | FC6310 | 28 April 2018 | 71.28 ± 9.05 | Dense | Sandy soil | Sample Site 3 |
Plot 4 | FC6310 | 28 April 2018 | 70.36 ± 8.37 | Dense | Sandy soil | Sample Site 4 |
Plot 5 | FC6310 | 28 April 2018 | 52.14 ± 9.25 | Dense | Sandy soil | Sample Site 5 |
Plot 6 | FC330 | 5 September 2018 | 65.26 ± 11.56 | Scatter | Reddish-brown | Sample Site 6 |
Plot 7 | FC330 | 5 July 2021 | 87.83 ± 15.04 | Dense | Reddish-brown | Sample Site 7 |
Plot 8 | FC330 | 21 May 2021 | 75.80 ± 13.27 | Dense | Reddish-brown | - |
Plot 9 | FC330 | 21 May 2021 | 86.38 ± 14.92 | Dense | Reddish-brown | - |
Plot 10 | FC330 | 21 May 2021 | 83.38 ± 15.91 | Dense | Reddish-brown | - |
Process | Combination | Mean-Shift Parameter | Kappa Coefficient | ||
---|---|---|---|---|---|
sp | sr | Average | S.D. | ||
Soil Classification | R-G-B | 5 | 20 | 0.9248 | 0.0891 |
B-VARI-CI | 5 | 10 | 0.9513 | 0.0358 | |
B-VARI-CI | 10 | 10 | 0.9463 | 0.0369 | |
B-VARI-BI | 5 | 10 | 0.9454 | 0.0528 | |
B-ExB-CI | 5 | 10 | 0.9450 | 0.0436 | |
B-VARI-BI | 10 | 5 | 0.9446 | 0.0423 | |
Vegetation Classification | R-G-B | 5 | 25 | 0.7993 | 0.1091 |
G-ExR-ExG | 10 | 20 | 0.8226 | 0.1045 | |
G-ExR-NGRDI | 10 | 20 | 0.8206 | 0.1086 | |
G-ExR-NGRDI | 25 | 15 | 0.8205 | 0.0975 | |
G-NGRDI-GLI | 20 | 15 | 0.8198 | 0.0991 | |
G-ExR-ExG | 25 | 15 | 0.8195 | 0.0980 |
Group | Index | Soil Classification | Vegetation Classification |
---|---|---|---|
1 | R, G, B, ExR, ExB, BI, CI | Low pixel value is vegetation | Low pixel value is cassava |
High pixel value is soil | High pixel value is weed | ||
2 | ExG, ExGR, NGRDI, GLI, VARI | Low pixel value soil | Low pixel value weed |
High pixel value is vegetation | High pixel value is cassava |
Process | Input Combination | Mean-Shift Parameter | Number of Cluster | Classification Rule | |
---|---|---|---|---|---|
sp | sr | ||||
Soil Classification | B-VARI-CI | 5 | 10 | 3 | Based on index B |
Vegetation Classification | G-ExR-ExG | 15 | 10 | 4 | Based on index G |
Sample Site | Combination for K-Means and RF | K-Means | RF | Proposed Classification Process | |||
---|---|---|---|---|---|---|---|
Kappa Coefficient | Kappa Coefficient | Kappa Coefficient | Soil’s Accuracy * | Cassava’s Accuracy * | Weed’s Accuracy * | ||
Sample Site 1 | G-GLI-VARI | 0.6958 | 0.7402 | 0.7771 | 0.9254 | 0.8097 | 0.8011 |
Sample Site 2 | R-B-NGRDI | 0.2471 | 0.6759 | 0.6786 | 0.9395 | 0.7114 | 0.5233 |
Sample Site 3 | R-G-ExGR | 0.5235 | 0.8185 | 0.8467 | 0.9664 | 0.8173 | 0.7933 |
Sample Site 4 | G-BI-CI | 0.3425 | 0.8281 | 0.8027 | 0.9800 | 0.8543 | 0.8557 |
Sample Site 5 | ExR-ExB-BI | 0.2823 | 0.8404 | 0.8609 | 0.9673 | 0.8667 | 0.8275 |
Sample Site 6 | R-ExG-ExGR | 0.7300 | 0.8950 | 0.8750 | 0.9808 | 0.8945 | 0.8733 |
Sample Site 7 | R-B-ExB | 0.8350 | 0.9900 | 0.9600 | 1.0000 | 0.9600 | 0.9630 |
Average | 0.5223 | 0.8269 | 0.8411 | 0.9656 | 0.8448 | 0.8053 | |
S.D. | 0.2369 | 0.1015 | 0.0900 | 0.0255 | 0.0775 | 0.1367 | |
t-value (t(0.05,6) = 1.943) | 2.3923 ** | 0.6979 | - | -- | - | - |
Plot | Area (sq.m) | Producer Accuracy | User Accuracy | Overall Accuracy | Kappa Coefficient | Time (min.) * | ||||
---|---|---|---|---|---|---|---|---|---|---|
Soil | Cassava | Weed | Soil | Cassava | Weed | |||||
1 | 19,826.8 | 0.9949 | 0.5449 | 0.5603 | 0.7076 | 0.9192 | 0.5909 | 0.7467 | 0.6344 | 5.15 |
2 | 27,816.8 | 0.9831 | 0.6784 | 0.6087 | 0.8140 | 0.7682 | 0.7119 | 0.7950 | 0.7025 | 8.21 |
3 | 56,636.6 | 0.9955 | 0.8571 | 0.8415 | 0.8745 | 0.9771 | 0.8549 | 0.8981 | 0.8471 | 10.02 |
4 | 55,741.4 | 1.0000 | 0.8324 | 0.7005 | 0.9077 | 0.7932 | 0.8252 | 0.8443 | 0.7665 | 10.11 |
5 | 70,671.1 | 0.9975 | 0.8377 | 0.5942 | 0.7909 | 0.8281 | 0.8300 | 0.8217 | 0.7445 | 18.32 |
6 | 3092.98 | 1.0000 | 0.8444 | 0.8444 | 0.9184 | 0.9268 | 0.8444 | 0.8963 | 0.8444 | 1.02 |
7 | 5884.63 | 1.0000 | 0.9600 | 1.0000 | 0.9804 | 1.0000 | 0.9804 | 0.9867 | 0.9800 | 1.04 |
8 | 36,776.5 | 1.0000 | 0.5844 | 0.8268 | 0.9390 | 0.8333 | 0.6702 | 0.8038 | 0.7056 | 5.48 |
9 | 11,657.5 | 1.0000 | 0.8154 | 0.9000 | 0.9130 | 0.9636 | 0.7895 | 0.8840 | 0.8215 | 2.12 |
10 | 4271.5 | 1.0000 | 0.7500 | 0.7750 | 0.9524 | 0.8108 | 0.7561 | 0.8417 | 0.7625 | 1.02 |
Average | 0.9971 | 0.7705 | 0.7651 | 0.8798 | 0.8820 | 0.7854 | 0.8518 | 0.7809 | - | |
S.D. | 0.0053 | 0.1307 | 0.1450 | 0.0844 | 0.0845 | 0.1092 | 0.0675 | 0.0971 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boonrang, A.; Piyatadsananon, P.; Sritarapipat, T. Efficient UAV-Based Automatic Classification of Cassava Fields Using K-Means and Spectral Trend Analysis. AgriEngineering 2024, 6, 4406-4424. https://doi.org/10.3390/agriengineering6040250
Boonrang A, Piyatadsananon P, Sritarapipat T. Efficient UAV-Based Automatic Classification of Cassava Fields Using K-Means and Spectral Trend Analysis. AgriEngineering. 2024; 6(4):4406-4424. https://doi.org/10.3390/agriengineering6040250
Chicago/Turabian StyleBoonrang, Apinya, Pantip Piyatadsananon, and Tanakorn Sritarapipat. 2024. "Efficient UAV-Based Automatic Classification of Cassava Fields Using K-Means and Spectral Trend Analysis" AgriEngineering 6, no. 4: 4406-4424. https://doi.org/10.3390/agriengineering6040250
APA StyleBoonrang, A., Piyatadsananon, P., & Sritarapipat, T. (2024). Efficient UAV-Based Automatic Classification of Cassava Fields Using K-Means and Spectral Trend Analysis. AgriEngineering, 6(4), 4406-4424. https://doi.org/10.3390/agriengineering6040250