Development and Evaluation of a Laser System for Autonomous Weeding Robots
Abstract
:1. Introduction
2. System Design and Development
2.1. System Requirements
2.2. Analysis of Existing Technologies
3. Laser Selection and Hardware Integration
3.1. Laser Selection
3.1.1. Fiber Laser
3.1.2. CO2 Laser
3.2. Laser Energy Absorption of Plants
3.3. System Architecture of the Laser Unit
4. Software Development and Image Processing Methods
4.1. Image Processing and Plant Detection
4.2. Laser Control and Targeting
4.3. Calibration Development
4.3.1. Coordinate Transformation
- SFx is the scaling factor for the x-axis.
- Scanner1x and Scanner2x are the x-coordinates of the two points in the scanner coordinate system.
- Image1x and Image2x are the x-coordinates of the same points in the image coordinate system.
4.3.2. Image Processing for Laser Dot Identification
4.4. Tracking Development
5. Experimental Results and Performance Evaluation
5.1. Initial Testing with Pilot Laser
5.2. Real-Time Capability Measurements
6. Discussion and Future Work
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Röös, E.; Mie, A.; Wivstad, M.; Salomon, E.; Johansson, B.; Gunnarsson, S.; Wallenbeck, A.; Hoffmann, R.; Nilsson, U.; Sundberg, C.; et al. Risks and opportunities of increasing yields in organic farming. A review. Agron. Sustain. Dev. 2018, 38, 14. [Google Scholar] [CrossRef]
- Jabran, K.; Chauhan, B.S. Overview and Significance of Non-Chemical Weed Control. In Non-Chemical Weed Control, 1st ed.; Jabran, K., Chauhan, B.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Czymmek, V.; Harders, L.O.; Knoll, F.J.; Hussmann, S. Vision-Based Deep Learning Approach for Real-Time Detection of Weeds in Organic Farming. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 20–23 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Marx, C.; Barcikowski, S.; Hustedt, M.; Haferkamp, H.; Rath, T. Design and application of a weed damage model for laser-based weed control. Biosyst. Eng. 2012, 113, 148–157. [Google Scholar] [CrossRef]
- Sirikunkitti, S.; Chongcharoen, K.; Yoongsuntia, P.; Ratanavis, A. Progress in a Development of a Laser-Based Weed Control System. In Proceedings of the 2019 Research, Invention, and Innovation Congress (RI2C), Bangkok, Thailand, 11–13 December 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Mathiassen, K.; Bak, T.; Christensen, S.; Kudsk, P. The Effect of Laser Treatment as a Weed Control Method. Biosyst. Eng. 2006, 95, 497–505. [Google Scholar] [CrossRef]
- Xiong, Y.; Ge, Y.; Liang, Y.; Blackmore, S. Development of a prototype robot and fast path-planning algorithm for static laser weeding. Comput. Electron. Agric. 2017, 142, 494–503. [Google Scholar] [CrossRef]
- Kaierle, S.; Marx, C.; Rath, T.; Hustedt, M. Find and Irradiate—Lasers Used for Weed Control. Laser Tech. J. 2013, 10, 44–47. [Google Scholar] [CrossRef]
- WeLaser Project. Available online: https://welaser-project.eu/overview/ (accessed on 20 September 2024).
- Knoll, F.J.; Czymmek, V.; Harders, L.O.; Hussmann, S. Real-time classification of weeds in organic carrot production using deep learning algorithms. Comput. Electron. Agric. 2019, 167, 105097. [Google Scholar] [CrossRef]
- Czymmek, V.; Köhn, C.; Harders, L.O.; Hussmann, S. Review of Energy-Efficient Embedded System Acceleration of Convolution Neural Networks for Organic Weeding Robots. Agriculture 2023, 13, 2103. [Google Scholar] [CrossRef]
- Weedbot. Available online: https://weedbot.eu/ (accessed on 20 September 2024).
- Carbon Robotics. Available online: https://carbonrobotics.com/ (accessed on 20 September 2024).
- Escarda Technologies GmbH. Available online: https://www.escarda.tech (accessed on 20 September 2024).
- Robot with Laser Kills Weed. Available online: https://rbtx.co.uk/en-GB/solutions/ponchon-sas-autonomous-robot-laser-weed-agriculture-delta-robot (accessed on 20 September 2024).
- Wöltjen, C.; Rath, T.; Herzog, D. Investigations about the Technical Basics of Laser Beam Use for Plant Manipulation. Acta Hortic. 2008, 801, 587–594. [Google Scholar] [CrossRef]
- Hügel, H.; Graf, T. Materialbearbeitung mit Laser: Grundlagen und Verfahren, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Coleman, G.; Betters, C.; Squires, C.; Leon-Saval, S.; Walsh, M. Low energy laser treatments control annual ryegrass (Lolium rigidum). Front. Agron. 2021, 2, 601542. [Google Scholar] [CrossRef]
- Heisel, T.; Schou, J.; Christensen, S.; Andreasen, C. Cutting weeds with a CO2 laser. Weed Res. 2001, 41, 19–29. [Google Scholar] [CrossRef]
- Heisel, T.; Schou, J.; Andreasen, C.; Christensen, S. Using laser to measure stem thickness and cut weed stems. Weed Res. 2002, 42, 242–248. [Google Scholar] [CrossRef]
- Buck, T.C.; Müller, M.S.; Koch, A.W. Faser-Bragg-Gitter zur Detektion von transienten Lasten. Tech. Mess. 2011, 78, 204–210. [Google Scholar] [CrossRef]
- Pfeifer, C. Einfluss ionisierender Strahlung auf die Funktionsfähigkeit faseroptischer Bragg-Gitter-Sensoren. Ph.D. Thesis, Gerhard-Mercator-University, Duisburg, Germany, 21 December 2000. Available online: https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00005043/pfeifferdiss.pdf (accessed on 20 September 2024).
- Marx, C.; Pastrana-Peréz, J.; Hustedt, M.; Barcikowski, S.; Haferkamp, H.; Rath, T. Selektive Unkrautbekämpfung mittels Lasertechnik. In Proceedings of the 25th German Conference on Weed Biology and Weed Control, Braunschweig, Germany, 13–15 March 2012; p. 215. [Google Scholar] [CrossRef]
- Ascard, J. Thermal Weed Control by Flaming. Ph.D. Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden, 1995. Available online: https://res.slu.se/id/publ/125574 (accessed on 20 September 2024).
- Marx, C. Untersuchungen zum Einsatz von Lasertechnologie in der Pflanzenproduktion. Ph.D. Thesis, Gottfried Wilhelm Leibniz University, Hannover, Germany, 2014. [Google Scholar] [CrossRef]
- Futonics Laser GmbH. Available online: https://www.futonics.de (accessed on 20 September 2024).
- Wieliczka, D.M.; Weng, S.; Querry, M.R. Wedge shaped cell for highly absorbent liquids: Infrared optical constants of water. Appl. Opt. 1989, 28, 1714–1719. [Google Scholar] [CrossRef] [PubMed]
- Czymmek, V.; Harders, L.O.; Knoll, F.J.; Hussmann, S. Accuracy Evaluation of a Weeding Robot in Organic Farming. In Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Ottawa, ON, Canada, 16–19 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- NVIDIA. Available online: https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-xavier-series/ (accessed on 20 September 2024).
- Kukaev, A.; Lukyanov, D.; Mikhailenko, D.; Safronov, D.; Shevchenko, S.; Venediktov, V.; Vlasov, A. Formation of a Complex Topologies of SAW-Based Inertial Sensors by Laser Thin Film Local Evaporation. Micromachines 2021, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Van Luan, D.; Truong, N.X.; Kim, H.; Lee, H.-J. Implementation of the XY2-100 protocol on low-cost microcontroller. In Proceedings of the 2017 International SoC Design Conference (ISOCC), Seoul, Republic of Korea, 5–8 November 2017; pp. 86–87. [Google Scholar] [CrossRef]
- Wang, L.; Lan, Y.; Zhang, Y.; Zhang, H.; Tahir, M.N.; Ou, S.; Liu, X.; Chen, P. Applications and prospects of agricultural unmanned aerial vehicle obstacle avoidance technology in China. Sensors 2019, 19, 642. [Google Scholar] [CrossRef] [PubMed]
Test No. | Exposure Time in ms | Revolutions | Mean Value in ms | Median in ms | Standard Deviation in ms |
---|---|---|---|---|---|
1 | 10 | 8 | 25.3 | 22.3 | 8.2 |
2 | 30 | 8 | 33.3 | 31.5 | 5.1 |
3 | 100 | 8 | 101.1 | 98.7 | 6.1 |
4 | 200 | 8 | 205.7 | 201.9 | 9.5 |
Test No. | Mean Value in ms | Median in ms | Standard Deviation in ms |
---|---|---|---|
1 | 24.5 | 21.5 | 8.2 |
2 | 32.7 | 30.9 | 5.0 |
3 | 100.4 | 98.1 | 6.0 |
4 | 205.1 | 201.2 | 9.4 |
Test No. | Mean Value in µs | Median in µs | Standard Deviation in µs |
---|---|---|---|
1 | 738.4 | 599.5 | 628.7 |
2 | 611.1 | 516.1 | 291.9 |
3 | 630.1 | 490.5 | 604.9 |
4 | 590.4 | 604.9 | 257.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czymmek, V.; Völckner, J.; Hussmann, S. Development and Evaluation of a Laser System for Autonomous Weeding Robots. AgriEngineering 2024, 6, 4425-4441. https://doi.org/10.3390/agriengineering6040251
Czymmek V, Völckner J, Hussmann S. Development and Evaluation of a Laser System for Autonomous Weeding Robots. AgriEngineering. 2024; 6(4):4425-4441. https://doi.org/10.3390/agriengineering6040251
Chicago/Turabian StyleCzymmek, Vitali, Jost Völckner, and Stephan Hussmann. 2024. "Development and Evaluation of a Laser System for Autonomous Weeding Robots" AgriEngineering 6, no. 4: 4425-4441. https://doi.org/10.3390/agriengineering6040251
APA StyleCzymmek, V., Völckner, J., & Hussmann, S. (2024). Development and Evaluation of a Laser System for Autonomous Weeding Robots. AgriEngineering, 6(4), 4425-4441. https://doi.org/10.3390/agriengineering6040251