Deep Electrical Resistivity Tomography for Detecting Gravitational Morpho-Structures in the Becca France Area (Aosta Valley, NW Italy)
Abstract
:1. Introduction
2. Features of Deep-Seated Gravitational Slope Deformation
3. Geomorphological and Geological Setting
4. Methods
5. Results
5.1. Results of the Geological Survey
5.2. Results of Geophysical Investigations
6. Discussion
- The presence of rocks or sediments with different resistivity values near the surface confirms the data inferred from the geological survey. The stretches showing high resistivity at both the surface and depth consist of bedrock. The stretches with high resistivity values only at the surface represent sectors where permeable and dry clast-rich deposits (ice-marginal, torrential, landslide, and debris flow) outcrop. Stretches with low resistivity values at the surface or shallow subsoil are related to sectors shaped in fine and impermeable deposits (e.g., subglacial).
- The outcropping gravitational structures that displace bedrock and Quaternary cover and landforms (detected by field observations) usually continue at depth, as evidenced by bands of reduced resistivity.
- Similarly, the deep bands of low resistivity indicate the extent in depth of structures (gravitational or tectonic) not detectable by field surveys, as their morphology has been erased by subglacial abrasion or covered by Quaternary sediments.
- The investigated area is cut by three great WNW–ESE glacial valleys (Tsa de Morgnoz, Clapin, and Clusellaz) (Figure 17) with wide widths (between 200 and 500 m), which are only partly evident in the field observations because they are filled by subglacial deposits locally covered by ice-marginal and other sediments. Geophysical investigations highlighted a significant depth of the bedrock floor (up to 30–40 m). The morphological evidence of these valleys is hidden (particularly for the Tsa de Morgnoz and Clapin Valleys).
- The same geophysical investigations indicate that glacial valley floors are shaped on large bands of highly fractured bedrock bounded by slopes shaped in more competent bedrock. The abrupt change in the degree of fracturing in the bedrock is in agreement with the occurrence of WNW–ESE gravitational structures. This arrangement, particularly evident for the Clusellaz Valley, where the structures converge towards the centre of the morphological incision, suggests that this valley is set along graben-like structures, indicative of extension phenomena. These phenomena agree with the strain analysis in the surrounding area, which reveals incremental strain axes in the NE–SW extensional direction during the Oligocene–present time span [51].
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandrowicz, Z.; Alexandrowicz, S.W. Ridge top trenches and rifts in the Polish Outer Carpathians. Ann. Soc. Geol. Pol. 1988, 58, 207–228. [Google Scholar]
- Calò, F.; Ardizzone, F.; Castaldo, R.; Lollino, P.; Tizzani, P.; Guzzetti, F.; Lanari, R.; Angeli, M.G.; Pontoni, F.; Manunta, M. Enhanced landslide investigations through advanced DInSAR techniques: The Ivancich case study, Assisi, Italy. Remote Sens. Environ. 2014, 142, 69–82. [Google Scholar] [CrossRef]
- Drouillas, Y.; Lebourg, V.; Zerathe, V.; Hippolyte, J.C.; Chochon, R.; Vidal, M.; Besso, R. Alpine deep-seated gravitational slope deformation and the Messinian Salinity Crisis. Landslides 2021, 18, 539–549. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Linares, R.; Roqué, C.; Zarroca, M.; Rosell, J.; Galve, J.P.; Carbonell, D. Investigating gravitational grabens relatedto lateral spreading and evaporite dissolution subsidence by means of detailed mapping, trenching, and electrical resistivity tomography (Spanish Pyrenees). Lithos 2012, 4, 331–353. [Google Scholar] [CrossRef]
- Herrera, G.; Gutiérrez, F.; García-Davalillo, J.C.; Guerrero, J.; Notti, D.; Galve, J.P.; Fernadez-Merodo, J.A.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Hippolyte, J.C.; Brocard, G.; Tardy, M.; Nicoud, G.; Bourlès, D.; Braucher, R.; Ménard, G.; Souffaché, B. The recent fault scarps of the Western Alps (France): Tectonic surface ruptures or gravitational sackung scarps? A combined mapping, geomorphic, and 10Be levelling, and dating approach. Tectonophysics 2006, 418, 255–276. [Google Scholar] [CrossRef]
- Hippolyte, J.C.; Bourlès, D.; Léanni, L.; Braucher, R.; Chauvet, F.; Lebetard, A.E. 10Be ages reveal >12 ka of gravitational movement in a major sackung of the Western Alps (France). Geomorphology 2012, 171–172, 139–153. [Google Scholar] [CrossRef]
- Mantovani, M.; Bossi, G.; Marcato, G.; Schenato, L.; Tedesco, G.; Titti, G.; Pasuto, A. New perspectives in landslide displacement detection using Sentinel-1 datasets. Remote Sens. 2019, 11, 2135. [Google Scholar] [CrossRef]
- Pánek, T.; Hradecký, J.; Šilhán, K.; Smolková, V.; Altová, V. Time constraints for the evolution of a large slope collapse in karstified mountainous terrain (case study from the southwestern tip of the Crimean Mountains, Ukraine). Geomorphology 2009, 108, 171–181. [Google Scholar] [CrossRef]
- Solari, L.; Del Soldato, M.; Montalti, R.; Bianchini, S.; Raspini, F.; Thuegaz, P.; Bertolo, D.; Tofani, V.; Casagli, N. A Sentinel-1based hotspot analysis: Landslide mapping in north-western Italy. Int. J. Remote Sens. 2019, 40, 7898–7921. [Google Scholar] [CrossRef]
- Zerathe, S.; Lebourg, T. Evolution stages of large deep-seated landslides at the front of a subalpine meridional chain (Maritime-Alps, France). Geomorphology 2012, 138, 390–403. [Google Scholar] [CrossRef]
- Dolce, S.; Forno, M.G.; Gattiglio, M.; Gianotti, F. The Lac Fallère as an example of interplay between deep-seated gravitational slope deformation and glacial shaping (Aosta Valley). GeoHazards 2024, 5, 38–63. [Google Scholar] [CrossRef]
- Schrott, L.; Sass, O. Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies. Geomorphology 2008, 93, 55–73. [Google Scholar] [CrossRef]
- Jongmans, D.; Bièvre, G.; Renalier, F.; Schwartz, S.; Beaurez, N.; Orengo, Y. Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (Frech Alps). Eng. Geol. 2009, 109, 45–56. [Google Scholar] [CrossRef]
- Jomard, T.; Lebourg, Y.; Guglielmi, E. Tric Electrical imaging of sliding geometry and fluids associated with a deep seated landslide (La Clapière, France). Earth Surf. Process. Landf. 2010, 35, 588–599. [Google Scholar] [CrossRef]
- Lebourg, M.; Hernandez, S.; Zerathe, S.; El Bedoui, H.; Jomard, B.; Fresia, B. Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approach. Eng. Geol. 2010, 114, 238–250. [Google Scholar] [CrossRef]
- Comina, C.; Forno, M.G.; Gattiglio, M.; Gianotti, F.; Raiteri, L.; Sambuelli, L. ERT geophysical surveys contributing to the reconstruction of the geological landscape in high mountain prehistorical archaeological sites (Plan di Modzon, Aosta Valley, Italy). Ital. J. Geosci. 2015, 134, 95–103. [Google Scholar] [CrossRef]
- Chalupa, V.; Pánek, T.; Tábořík, P.; Klimeš, J.; Hartvich, F.; Grygar, R. Deep-seated gravitational slope deformations controlled by the structure of flysch nappe outliers: Insights from large-scale electrical resistivity tomography survey and LiDAR mapping. Geomorphology 2018, 321, 174–187. [Google Scholar] [CrossRef]
- Chalupa, V.; Pánek, T.; Šilhán, K.; Břežný, M.; Tichavský, R.; Grygar, R. Low-topography deep-seated gravitational slope deformation: Slope instability of flysch thrust fronts (Outer Western Carpathians). Geomorphology 2021, 389, 107833. [Google Scholar] [CrossRef]
- Kasprzak, M.; Jancewicz, K.; Różycka, M.; Kotwicka, W.; Migoń, P. Geomorphology- and geophysics-based recognition of stages of deep-seated slope deformation (Sudetes, SW Poland). Eng. Geol. 2019, 260, 105230. [Google Scholar] [CrossRef]
- Dramis, F.; Sorriso-Valvo, M. Deep-seated gravitational slope deformations, related landslides and tectonics. Eng. Geol. 1994, 38, 231–243. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.B.; Frattini, P. Slow rock-slope deformation. In Landslides Types, Mechanisms and Modeling; Clague, J.J., Stead, D., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 207–221. [Google Scholar] [CrossRef]
- Crosta, G.; Frattini, P.; Agliardi, F. Deep seated gravitational slope deformations in the European Alps. Tectonophysics 2013, 605, 13–33. [Google Scholar] [CrossRef]
- Zischinsky, U. On the deformation of high slopes. In Proceedings of the Last Conference International Society Rock Mechanics, Lisbon, Portugal, 25 September–1 October 1966; Volume 2, pp. 179–185. [Google Scholar]
- Němčok, A. Gravitational slope deformation in high mountains. In Proceedings of the 24th International Geological Congress, Montreal, Canada, 21–30 August 1972; Volume 13, pp. 132–141. [Google Scholar]
- Malgot, J. Deep-seated gravitational slope deformations in neovolcanic mountain ranges of Slovakia. Bull. Eng. Geol. Environ. 1977, 16, 106–109. [Google Scholar] [CrossRef]
- Mortara, G.; Sorzana, P.F. Fenomeni di deformazione gravitativa profonda nell’arco alpino occidentale italiano; considerazioni lito-strutturali e morfologiche. Ital. J. Geosci. 1987, 106, 303–314. [Google Scholar]
- Agliardi, F.; Crosta, G.B.; Zanchi, A.; Ravazzi, C. Onset and timing of deep-seated gravitational slope deformations in the eastern Alps, Italy. Geomorphology 2009, 103, 113–129. [Google Scholar] [CrossRef]
- Fioraso, G.; Baggio, P.; Bonadeo, L.; Brunamonte, F. Post-glacial evolution of gravitational slope deformations in the upper Susa and Chisone Valleys (Italian Western Alps). Ital. J. Quat. Sci. 2011, 24, 104–106. [Google Scholar]
- Forno, M.G.; Gattiglio, M.; Gianotti, F.; Rossato, S.; Taddia, G. Deep-seated gravitational slope deformation effects on Quaternary deposits in the western Alps (NW Italy). Alp. Mediterr. Quat. 2020, 33, 43–60. [Google Scholar] [CrossRef]
- Shroder, J.F.; Owen, A.; Seong, Y.B.; Bishop, M.P.; Bush, A.; Caffee, M.C.; Copland, L.; Finkel, R.C.; Kamp, U. The role of mass movements on landscape evolution in the Central Karakoram: Discussion and speculation. Quat. Int. 2011, 236, 34–47. [Google Scholar] [CrossRef]
- Jarman, D.; Calvet, M.; Corominas, J.; Delmas, M.; Gunnell, Y. Large-scale rock slope failures in the eastern Pyrenees: Identifying a sparse but significant population in paraglacial and parafluvial contexts. Geogr. Ann. Ser. A Phys. Geogr. 2014, 96, 357–391. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.B.; Frattini, P.; Malusà, M.G. Giant non-catastrophic landslides and the long-term exhumation of the European Alps. Earth Planet. Sci. Lett. 2013, 365, 263–274. [Google Scholar] [CrossRef]
- Martinotti, G.; Giordan, D.; Giardino, M.; Ratto, S. Controlling factors for deep-seated gravitational slope deformation (DSGSD) in the Aosta Valley (NW Alps, Italy). Geol. Soc. Lond. Spec. Publ. 2011, 351, 113–131. [Google Scholar] [CrossRef]
- Ambrosi, C.; Crosta, G.B. Large sackung along major tectonic features in the Central Italian Alps. Eng. Geol. 2006, 83, 183–200. [Google Scholar] [CrossRef]
- Esposito, C.; Di Luzio, E.; Baleani, M.; Troiani, F.; Della Seta, M.; Bozzano, F.; Mazzanti, P. Fold architecture predisposing deep-seated gravitational slope deformations within a flysch sequence in the Northern Apennines (Italy). Geomorphology 2021, 380, 107629. [Google Scholar] [CrossRef]
- Gori, S.; Falcucci, E.; Dramis, F.; Galadini, F.; Galli, P.; Giaccio, B.; Messina, P.; Pizzi, A.; Sposato, A.; Cosentino, D. Deep-seated gravitational slope deformation, largescale rock failure, and active normal faulting along Mt. Morrone (Sulmona basin, central Italy): Geomorphological and paleoseismological analyses. Geomorphology 2014, 208, 88–101. [Google Scholar] [CrossRef]
- Moro, M.; Saroli, M.; Gori, S.; Falcucci, E.; Galadini, F.; Messina, P. The interaction between active normal faulting and large-scale gravitational mass movements revealed by paleoseismological techniques: A case study from central Italy. Geomorphology 2012, 151–152, 164–174. [Google Scholar] [CrossRef]
- Fioraso, G. Impact of massive deep-seated rock slope failures on mountain valley morphology in the northern Cottian Alps (NW Italy). J. Maps 2017, 13, 575–587. [Google Scholar] [CrossRef]
- Cody, E.; Anderson, B.M.; McColl, S.T.; Fuller, I.C.; Purdie, H.L. Paraglacial adjustment of sediment slopes during and immediately after the debuttressing. Geomorphology 2020, 371, 107411. [Google Scholar] [CrossRef]
- Mantovani, M.; Bossi, G.; Dykes, A.; Pasuto, A.; Soldati, M.; Devoto, S. Coupling long-term GNSS monitoring and numerical modelling of lateral spreading for hazard assessment purposes. Eng. Geol. 2022, 296, 106466. [Google Scholar] [CrossRef]
- Cignetti, M.; Manconi, A.; Manunta, M.; Giordan, D.; De Luca, C.; Allasia, P.; Ardizzone, F. Taking advantage of the ESA G-POD service to study ground deformation processes in high mountain areas: A Valle d’Aosta case study, Northern Italy. Remote Sens. 2016, 8, 852. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.; Zanchi, A. Structural constraints on deep-seated slope deformation kinematics. Eng. Geol. 2001, 59, 83–102. [Google Scholar] [CrossRef]
- Dal Piaz, G.V. Guide Geologiche Regionali, Le Alpi dal Monte Bianco al Lago Maggiore, Parte Prima; BE-MA Editrice: Milan, Italy, 1992. [Google Scholar]
- Pánek, T.; Klimeš, J. Temporal behavior of deep-seated gravitational slope deformations: A review. Earth Sci. Rev. 2016, 156, 14–38. [Google Scholar] [CrossRef]
- Forno, M.G.; Gattiglio, M.; Ghignone, S.; Taddia, G. Deep-seated gravitational slope deformation involving glacial evidence in the Rodoretto Valley (NW Alps). J. Maps 2021, 17, 846–858. [Google Scholar] [CrossRef]
- Forno, M.G.; Comina, C.; Gattiglio, M.; Gianotti, F.; Lo Russo, S.; Sambuelli, L.; Raiteri, L.; Taddia, G. Preservation of Quaternary sediments in DSGSD environment: The Mont Fallère case study (Aosta valley, NW Italy). Alp. Mediterr. Quat. 2016, 29, 181–191. Available online: https://amq.aiqua.it/index.php/amq/article/view/104 (accessed on 18 October 2021).
- Forno, M.G.; Bollati, I.M.; Gattiglio, M.; Gianotti, F.; Pelfini, M.; Sartori, G. How can a complex geosite be enhanced? A landscape-scale approach at the Deep Seated Gravitational Slope Deformation of Pointe Leysser (Aosta Valley, NW Italy). Geoheritage 2022, 14, 100. [Google Scholar] [CrossRef]
- Forno, M.G.; Fubelli, G.; Gattiglio, M.; Taddia, G.; Ghignone, S. Object-based geomorphological mapping: Application on an Alpine deep-seated gravitational slope deformation contest (Germanasca Valley, Western Alps). Appl. Sci. 2022, 12, 778. [Google Scholar] [CrossRef]
- Delle Piane, L.; Perello, P.; Baietto, A.; Giorza, A.; Musso, A.; Gabriele, P.; Baster, I. Mature vs. active deep-seated landslides: A comparison through two case histories in the Alps. Rock Mech. Rock Eng. 2016, 49, 2189–2216. [Google Scholar] [CrossRef]
- Ratto, S.; Giardino, M.; Giordan, D.; Alberto, W.; Armand, M. Carta dei Fenomeni Franosi della Valle d’Aosta, 1:100.000 in Scale; Tipografia Valdostana: Aosta, Italy, 2007. [Google Scholar]
- Trigila, A.; Iadanza, C.; Spizzichino, D. IFFI Project (Italian Landslide Inventory) and risk assessment. In First World Landslide Forum; Springer: Berlin/Heidelberg, Germany, 2008; pp. 18–21. [Google Scholar]
- Hughes, P.D.; Gibbard, P.L. A stratigraphical basis for the Last Glacial Maximum (LGM). Quat. Int. 2015, 383, 174–185. [Google Scholar] [CrossRef]
- Wirsig, C.; Zasadni, J.; Christl, C.; Akçar, N.; Ivy-Ochs, S. Dating the onset of LGM ice surface lowering in the High Alps. Quat. Sci. Rev. 2016, 143, 37–50. [Google Scholar] [CrossRef]
- Polino, R.; Malusà, M.G.; Martin, S.; Carraro, F.; Gianotti, F.; Bonetto, F. Note Illustrative della Carta Geologica d’Italia Alla Scala 1:50.000. Foglio 090 Aosta; ISPRA-Istituto Superiore per la Protezione e la Ricerca Ambientale: Roma, Italy, 2015; pp. 1–144. [Google Scholar]
- Polino, R.; Carraro, F.; Martin, S.; Baggio, P.; Baster, I.; Bertolo, D.; Fontan, D.; Gianotti, F.; Malusà, M.G.; Monopoli, B.; et al. Carta Geologica d’Italia Alla Scala 1:50.000, Foglio 90, “Aosta”; ISPRA—Servizio Geologico d’Italia: Roma, Italy, 2015. [Google Scholar]
- Elter, G. Carte Géologique de la Vallée d’Aoste, Echelle 1:100.000. C.N.R.; Centro Studi sui Problemi dell’Orogeno delle Alpi Occidentali Edizioni S.E.L.C.A.: Firenze, Italy, 1987. [Google Scholar]
- De Giusti, F.; Dal Piaz, G.V.; Massironi, M.; Schiavo, A. Carta geotettonica della Valle d’Aosta. Mem. Sci. Geol. 2004, 55, 129–149. [Google Scholar]
- Dal Piaz, G.V.; Bistacchi, A.; Massironi, M. Geological outline of the Alps. Episodes 2003, 26, 175–180. [Google Scholar] [CrossRef]
- Malusà, M. Post-Metamorphic evolution of the Western Alps: Kinematic Constraints from a Multi-Disciplinary Approach (Geological Mapping, Meso-Structural Analysis, Fission-Track Dating, Fluid Inclusion Analysis). Ph.D. Thesis, University of Turin-CNR-IGG, Torino, Italy, 2004; 320p. [Google Scholar]
- Forno, M.G.; Gattiglio, M.; Gianotti, F. Geological context of the Becca France historical landslide (Aosta Valley, NW Italy). Alp. Mediterr. Quat. 2012, 25, 125–139. Available online: https://amq.aiqua.it/index.php/amq/article/view/51 (accessed on 18 October 2021).
- Forno, M.G.; Gattiglio, M.; Gianotti, F.; Guerreschi, A.; Raiteri, L. Deep-seated gravitational slope deformations as possible suitable locations for prehistoric human settlements: An example from the Italian Western Alps. Quat. Int. 2013, 303, 180–190. [Google Scholar] [CrossRef]
- Forno, M.G.; Gattiglio, M.; Gianotti, F.; Guerreschi, A.; Raiteri, L. La percezione del paesaggio di alta montagna da parte dell’uomo preistorico: L’esempio dell’area di Plan di Modzon nella Conca del Fallère (Valle d’Aosta, Italia nordoccidentale). In Proceedings of the Atti del Convegno in Memoria di Lucilia Gregori, Perugia, Italy, 19–22 February 2013; Cultura Territori e Linguaggi, Università di Perugia: Perugia, Italy, 2014; Volume 4, pp. 233–245. [Google Scholar]
- Mercalli, L.; Castellano, C.; Cat Berro, D.; Di Napoli, G.; Guindani, N.; Montuschi, S.; Mortara, G.; Ratti, M. Atlante Climatico della Valle d’Aosta; Società Meteorologica Subalpina: Torino, Italy, 2003; 405p. [Google Scholar]
- Bajni, G.; Camera, C.A.S.; Apuani, T. Deciphering meteorological influencing factors for Alpine rockfalls: A case study in Aosta Valley. Landslides 2021, 18, 3279–3298. [Google Scholar] [CrossRef]
- Pini, R.; Ravazzi, C.; Raiteri, L.; Guerreschi, A.; Castellano, L.; Comolli, R. From pristine forests to high-altitude pastures: An ecological approach to prehistoric human impact on vegetation and landscapes in the western Italian Alps. J. Ecol. 2017, 105, 1580–1597. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Nanni, T.; Simolo, C.; Spinoni, J. High resolution temperature climatology for Italy: Interpolation method intercomparison. Int. J. Climatol. 2014, 34, 1278–1296. [Google Scholar] [CrossRef]
- Blanchy, G.; Saneiyan, S.; Boyd, J.; McLachlan, P.V.; Binley, A. ResIPy, an intuitive open source software for complex geoelectrical inversion/modelling. Comput. Geosci. 2020, 137, 104423. [Google Scholar] [CrossRef]
- Binley, A. Tools and techniques: DC Electrical Methods. In Treatise on Geophysics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 11, pp. 233–259. [Google Scholar] [CrossRef]
- Gouffon, Y. Géologie de la “nappe” du Grand St-Bernard entre la DoireBaltée et la frontière suisse (Vallée d’Aoste, Italie). Mém. Géol. 1993, 12, 150. [Google Scholar]
- Pantet, A.; Epard, J.L.; Masson, H. Mimicking Alpine thrusts by passive deformation of synsedimentary normal faults: A record of the Jurassic extension of the European margin (Mont Fort nappe, Pennine Alps). Swiss J. Geosci. 2020, 113, 13. [Google Scholar] [CrossRef]
- Caby, R. Le Mesozoique de la zone du Combin en Val d’Aoste (Alpes Graies): Imbrications ectoniques entre series issues des domaines pennique, austroalpin et oceanique. Géol. Alp. 1981, 57, 5–13. [Google Scholar]
- Dal Piaz, G.V. Alcune considerazioni sulla genesi delle ofioliti piemontesi e dei giacimenti ad esse associati. Bolettino Assoc. Mineraria Subalp. 1971, 8, 365–388. [Google Scholar]
- Bearth, P. Zur Gliederung der Bundnerschiefer in der Region von Zermatt. Eclogae Geol. Helv. 1976, 69, 149–161. [Google Scholar]
- Chessex, R. Tectonomagmatic setting of the Mont Fort nappe basement, Penninic Domain, Western Alps, Switzerland. In International Earth Sciences Colloquium on the Aegean Region; Piskin, O., Ergun, M., Savascin, M.Y., Tarcan, G., Eds.; Izmir: Gulluck, Turkey, 1995; Volume 1, pp. 19–35. [Google Scholar]
- Sartori, M.; Gouffon, Y.; Marthaler, M. Harmonisation et définition des unités lithostratigraphiques brianconnaises dans les nappes penniques du Valais. Eclogae Geol. Helv. 2006, 99, 363–407. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forno, M.G.; Gattiglio, M.; Gianotti, F.; Comina, C.; Vergnano, A.; Dolce, S. Deep Electrical Resistivity Tomography for Detecting Gravitational Morpho-Structures in the Becca France Area (Aosta Valley, NW Italy). GeoHazards 2024, 5, 886-916. https://doi.org/10.3390/geohazards5030045
Forno MG, Gattiglio M, Gianotti F, Comina C, Vergnano A, Dolce S. Deep Electrical Resistivity Tomography for Detecting Gravitational Morpho-Structures in the Becca France Area (Aosta Valley, NW Italy). GeoHazards. 2024; 5(3):886-916. https://doi.org/10.3390/geohazards5030045
Chicago/Turabian StyleForno, Maria Gabriella, Marco Gattiglio, Franco Gianotti, Cesare Comina, Andrea Vergnano, and Stefano Dolce. 2024. "Deep Electrical Resistivity Tomography for Detecting Gravitational Morpho-Structures in the Becca France Area (Aosta Valley, NW Italy)" GeoHazards 5, no. 3: 886-916. https://doi.org/10.3390/geohazards5030045
APA StyleForno, M. G., Gattiglio, M., Gianotti, F., Comina, C., Vergnano, A., & Dolce, S. (2024). Deep Electrical Resistivity Tomography for Detecting Gravitational Morpho-Structures in the Becca France Area (Aosta Valley, NW Italy). GeoHazards, 5(3), 886-916. https://doi.org/10.3390/geohazards5030045