An Approach for Anomaly Detection in Network Communications Using k-Path Analysis
Abstract
:1. Introduction
- Initial infection and local research: The intruder often starts by infecting a system or network via various vectors, such as malware or social engineering techniques. Once infiltrated, the intruder conducts local research to identify other potential resources to compromise.
- First Traversal and Further Exploration: After the initial infection, the first traversal of the network occurs. The intruder explores accessible systems to gather information and identify their potential target.
- Complete Traversal and Malicious Actions: Once the intruder has identified their target and obtained the necessary privileges, they can undertake malicious actions.
- An employee opens a malicious email containing a link to a compromised site.
- The compromised site exploits a vulnerability in the employee’s browser to install malware on their workstation.
- The malware begins scanning the local network for other vulnerable systems. It identifies an internal server used for storing sensitive data.
- Once on the internal server, the malware begins collecting information about the system, such as credentials stored in plain text in configuration files.
- The intruder uses the retrieved credentials to log in to the server and explore the stored data. They discover a database server containing customer information.
- Using the access privileges obtained on the internal server, the intruder accesses the database server and extracts sensitive customer data, including credentials and financial information.
- The intruder uses this information to conduct fraudulent transactions and access sensitive user accounts.
2. Data Processing and Modeling
- The date the flow was recorded.
- The duration for which the flow was active was often measured in seconds.
- The source and destination IP addresses (data can be replaced by the source name).
- The type of IP protocol (e.g., TCP = 6; UDP = 17; ICMP = 1).
- The source and destination TCP/UDP port numbers.
- The number of packets in the flow.
- The number of bytes in the flow’s packets.
3. Related Works
4. Three-State Markovian Approach
4.1. Definition of the States
4.2. Modeling, Estimation, and Hypothesis Testing
- Estimation of : To achieve this, we advocate for the use of maximum likelihood estimation. Upon differentiation, we obtain:SettingHence
- Estimation of : To estimate , we will directly use numerical optimization of
- Estimation of : For this, we recommend using the derivative of
- If the p-value , then the observation on is considered normal.
- If the p-value , then the observation on is considered abnormal.
5. Results
5.1. Generation of Flow Data
5.2. Training the Models
5.3. Determination of the p-Value Threshold ()
5.4. Comparison of Models
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, M.; Mahmood, A.N.; Hu, J. A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 2016, 60, 19–31. [Google Scholar] [CrossRef]
- Anwar, S.; Mohamad Zain, J.; Zolkipli, M.F.; Inayat, Z.; Khan, S.; Anthony, B.; Chang, V. From intrusion detection to an intrusion response system: Fundamentals, requirements, and future directions. Algorithms 2017, 10, 39. [Google Scholar] [CrossRef]
- Ranshous, S.; Shen, S.; Koutra, D.; Harenberg, S.; Faloutsos, C.; Samatova, N.F. Anomaly detection in dynamic networks: A survey. Wiley Interdiscip. Rev. Comput. Stat. 2015, 7, 223–247. [Google Scholar] [CrossRef]
- Neil, J.; Storlie, C.; Hash, C.; Brugh, A. Statistical Detection of Intruders within Computer Networks Using Scan Statistic. In Data Analysis for Network Cyber-Security; Imperial College Press: London, UK, 2013; pp. 71–104. [Google Scholar]
- Ventre, D. Cyberattaque et Cyberdéfense; Lavoisier: Paris, France, 2011. [Google Scholar]
- Algarni, S. Cybersecurity attacks: Analysis of “wannacry” attack and proposing methods for reducing or preventing such attacks in future. In ICT Systems and Sustainability: Proceedings of ICT4SD 2020; Springer: Singapore, 2021; Volume 1, pp. 763–770. [Google Scholar]
- Grana, J.; Neil, J.; Wolpert, D.; Xie, D.; Bhattacharya, T.; Bent, R.W. A likelihood ratio anomaly detector for identifying within-perimeter computer network attacks. J. Netw. Comput. Appl. 2016, 66, 166–179. [Google Scholar] [CrossRef]
- Li, L.; Lu, Y.; Yang, G.; Yan, X. End-to-End Network Intrusion Detection Based on Contrastive Learning. Sensors 2024, 24, 2122. [Google Scholar] [CrossRef] [PubMed]
- MITRE Corporation. MITRE ATT&CK®: Enterprise Matrix. Available online: https://attack.mitre.org/matrices/enterprise/ (accessed on 12 March 2023).
- Sharif, A. Qu’est-ce Qu’un Event Log? Available online: https://www.crowdstrike.fr/cybersecurity-101/observability/event-log/ (accessed on 17 May 2023).
- Hofstede, R.; Čeleda, P.; Trammell, B.; Drago, I.; Sadre, R.; Sperotto, A.; Pras, A. Flow monitoring explained: From packet capture to data analysis with netflow and ipfix. IEEE Commun. Surv. Tutor. 2014, 16, 2037–2064. [Google Scholar] [CrossRef]
- Turcotte, M.J.M.; Kent, A.D.; Hash, C. Chapter 1: Unified Host and Network Data Set. In Data Science for Cyber-Security; World Scientific Publishing Europe Ltd.: London, UK, 2018; pp. 1–22. [Google Scholar]
- Bondy, J.A.; Murty, U.S.R. Théorie des Graphes; Traduit de l’anglais par F. Havet; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Caplot, A. Analyse de Profils Audiologiques par Apprentissage Statistique. Doctoral Dissertation, Université de Montpellier, Montpellier, France, 2022. [Google Scholar]
- Cogranne, R.; Retraint, F. A new tomography model for almost optimal detection of anomalies. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 1461–1465. [Google Scholar]
- Pinon, N.; Trombetta, R.; Lartizien, C. Détection d’anomalies dans l’image ou l’espace latent des auto-encodeurs basés sur des patchs pour l’analyse d’images industrielles. arXiv 2023, arXiv:2307.02495. [Google Scholar]
- Chandola, V. Anomaly Detection for Symbolic Sequences and Time Series Data. Doctoral Dissertation, University of Minnesota, Minneapolis, MN, USA, 2009. [Google Scholar]
- Forrest, S.; Hofmeyr, S.A.; Somayaji, A.; Longstaff, T.A. A sense of self for unix processes. In Proceedings of the 1996 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 6–8 May 1996. [Google Scholar]
- Kimura, T.; Ishibashi, K.; Mori, T.; Sawada, H.; Toyono, T.; Nishimatsu, K.; Watanabe, A.; Shimoda, A.; Shiomoto, K. Spatio-temporal factorization of log data for understanding network events. In Proceedings of the IEEE INFOCOM 2014-IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014. [Google Scholar]
- Lévy-Leduc, C. Several approaches for detecting change-points in high-dimensional network traffic data. In Data Analysis for CyberSecurity; Imperial College Press: London, UK, 2013. [Google Scholar]
- Evangelou, M.; Adams, N.M. Predictability of netflow data. In Proceedings of the 2016 IEEE Conference on Intelligence and Security Informatics (ISI), Tucson, AZ, USA, 28–30 September 2016; pp. 67–72. [Google Scholar]
- Evangelou, M.; Adams, N.M. An anomaly detection framework for cyber-security data. Comput. Secur. 2020, 97, 101941. [Google Scholar] [CrossRef]
- Larroche, C. Network-Wide Intrusion Detection through Statistical Analysis of Event Logs: An Interaction-Centric Approach. Doctoral Dissertation, Institut Polytechnique de Paris, Paris, France, 2021. [Google Scholar]
- Zong, B.; Song, Q.; Min, M.R.; Cheng, W.; Lumezanu, C.; Cho, D.; Chen, H. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In Proceedings of the ICLR 2018 6th International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Anon. Détermination du Seuil et de la Limite de Détection en Spectrométrie Gamma. 1989. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:21054264 (accessed on 11 October 2023).
- Casella, G.; Berger, R.L. Statistical lnference; Duxbury Press: Pacific Grove, CA, USA, 2002. [Google Scholar]
Index | Src | Dest | p | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | A | B | 0.681 | 0.318 | 0.679 | 0.320 | 0.479 | 0.330 | 6.045 |
1 | B | C | 0.670 | 0.329 | 0.672 | 0.327 | 0.533 | 0.367 | 6.045 |
2 | C | D | 0.654 | 0.345 | 0.657 | 0.342 | 0.520 | 0.330 | 6.045 |
Index | Src. | Dest. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | A | B | 505 | 0.680 | 0.681 | 0.310 | 0.007 | 0.680 | 0.311 | 0.007 | 0.632 | 0.361 | 0.005 |
1 | B | C | 545 | 0.671 | 0.670 | 0.317 | 0.012 | 0.672 | 0.315 | 0.011 | 0.682 | 0.302 | 0.015 |
2 | C | D | 505 | 0.655 | 0.654 | 0.336 | 0.008 | 0.657 | 0.332 | 0.010 | 0.651 | 0.333 | 0.014 |
Index | Src. | Dest. | |||||||||||
0 | A | B | 0.610 | 0.557 | 6.068 | ||||||||
1 | B | C | 0.610 | 0.557 | 6.068 | ||||||||
2 | C | D | 0.564 | 0.515 | 6.068 |
Models | Path-scan model associated with the observed Markov model | Three-state model using the number of packets exchanged per minute |
Threshold () | 0.13846332431809666 | 0.3322934604988478 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasse, M.; Charrier, R.; Berred, A.; Bertelle, C.; Delpierre, C. An Approach for Anomaly Detection in Network Communications Using k-Path Analysis. J. Cybersecur. Priv. 2024, 4, 449-467. https://doi.org/10.3390/jcp4030022
Kasse M, Charrier R, Berred A, Bertelle C, Delpierre C. An Approach for Anomaly Detection in Network Communications Using k-Path Analysis. Journal of Cybersecurity and Privacy. 2024; 4(3):449-467. https://doi.org/10.3390/jcp4030022
Chicago/Turabian StyleKasse, Mamadou, Rodolphe Charrier, Alexandre Berred, Cyrille Bertelle, and Christophe Delpierre. 2024. "An Approach for Anomaly Detection in Network Communications Using k-Path Analysis" Journal of Cybersecurity and Privacy 4, no. 3: 449-467. https://doi.org/10.3390/jcp4030022
APA StyleKasse, M., Charrier, R., Berred, A., Bertelle, C., & Delpierre, C. (2024). An Approach for Anomaly Detection in Network Communications Using k-Path Analysis. Journal of Cybersecurity and Privacy, 4(3), 449-467. https://doi.org/10.3390/jcp4030022