Spontaneous Curvature Induced Stretching-Bending Mode Coupling in Membranes
Abstract
:1. Introduction
2. Basic Derivation
3. Eigen-Modes in Spontaneously Curved Membranes
- For the sufficiently strong spontaneous curvature-induced coupling, there is an interval of the wave vectors,
- In the limit of weak coupling,
4. Outlook and Conclusions
Acknowledgments
Conflicts of Interest
References
- Kernes, J.; Levine, A.J. Effects of curvature on the propagation of undulatory waves in lower dimensional elastic materials. Phys. Rev. E 2021, 103, 013002. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.; Piran, T.; Weinberg, S. (Eds.) Statistical Mechanics of Membranes and Surfaces; World Scientific: Singapore, 1989. [Google Scholar] [CrossRef]
- Chaikin, P.M.; Lubensky, T.C. Principles of Condensed Matter Physics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef] [Green Version]
- Bowick, M.J.; Travesset, A. The statistical mechanics of membranes. Phys. Rep. 2001, 344, 255–308. [Google Scholar] [CrossRef] [Green Version]
- Safran, S.A. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Kats, E.I.; Lebedev, V.V. Fluctuational Effects in the Dynamics of Liquid Crystals; Springer: New York, NY, USA, 1994. [Google Scholar] [CrossRef]
- Helfrich, W. Elastic properties of lipid bilayers: Theory and possible experiment. Z. Naturforsch. 1973, 28, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Seifert, U. Configurations of fluid membranes and vesicles. Adv. Phys. 1997, 46, 13–137. [Google Scholar] [CrossRef]
- Nelson, D.R.; Peliti, L. Fluctuations in membranes with crystalline and hexatic order. J. Phys. France 1987, 48, 1085–1092. [Google Scholar] [CrossRef]
- Aronovitz, J.A.; Lubensky, T.C. Fluctuations of solid membranes. Phys. Rev. Lett. 1988, 60, 2634–2638. [Google Scholar] [CrossRef] [PubMed]
- Kernes, J.; Levine, A.J. Geometrically-induced localization of flexural waves on thin warped physical membranes. arXiv 2020, arXiv:2011.07152v1. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, V.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–161. [Google Scholar] [CrossRef] [Green Version]
- Vozmediano, M.A.H.; Katsnelson, M.I.; Guinea, F. Gauge fields in graphene. Phys. Rep. 2010, 496, 109–152. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Fasolino, A.; Los, J.H.; Katsnelson, M.I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858–861. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Miao, F.; Chen, Z.; Zhang, H.; Jang, W.; Dames, C.; Lau, C.N. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 2009, 4, 562–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, S.; Berry, V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–213. [Google Scholar] [CrossRef]
- Raghunathan, V.A.; Katsaras, J. Lβ′→Lc phase transition in phosphatidylcholine lipid bilayers: A disorder-order transition in two dimensions. Phys. Rev. E 1996, 54, 4446–4449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akabori, K.; Nagle, J.F. Structure of the DMPC lipid bilayer ripple phase. Soft Matter 2015, 11, 918–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burmistrov, I.S.; Gornyi, I.V.; Kachorovskii, V.Y.; Katsnelson, M.I.; Los, J.H.; Mirlin, A.D. Stress-controlled Poisson ratio of a crystalline membrane: Application to graphene. Phys. Rev. B 2018, 97, 125402. [Google Scholar] [CrossRef] [Green Version]
- Saykin, D.R.; Kachorovskii, V.Y.; Burmistrov, I.S. Phase diagram of a flexible two-dimensional material. Phys. Rev. Res. 2020, 2, 043099. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kats, E.I. Spontaneous Curvature Induced Stretching-Bending Mode Coupling in Membranes. Physics 2021, 3, 367-371. https://doi.org/10.3390/physics3020025
Kats EI. Spontaneous Curvature Induced Stretching-Bending Mode Coupling in Membranes. Physics. 2021; 3(2):367-371. https://doi.org/10.3390/physics3020025
Chicago/Turabian StyleKats, Efim I. 2021. "Spontaneous Curvature Induced Stretching-Bending Mode Coupling in Membranes" Physics 3, no. 2: 367-371. https://doi.org/10.3390/physics3020025
APA StyleKats, E. I. (2021). Spontaneous Curvature Induced Stretching-Bending Mode Coupling in Membranes. Physics, 3(2), 367-371. https://doi.org/10.3390/physics3020025