An Introduction to Noncommutative Physics
Abstract
:1. Introduction
2. Noncommutative Phenomena in Physics: Important Examples
2.1. Noncommutativity in Classical Physics
2.2. Permutation Symmetries in Statistical Mechanics
2.3. The Heisenberg Algebra
2.4. The Classical and Quantum Hall Effects
3. An Overview of Noncommutative Algebras
3.1. The Poisson Algebra in Symplectic Space
3.2. From Poisson to Heisenberg
3.3. From Heisenberg to the Lie, Clifford, and Dirac Algebras
3.4. The Snyder Algebra
3.5. Beyond Poisson: The Nambu Algebra
- Skew-symmetry:
- Leibniz rule:
- Fundamental identity:
- Skew-symmetry:
- Leibniz rule:
- Fundamental identity:
3.6. The Deformed Heisenberg Algebra: Noncommutative Phase Space
4. Noncommutative Quantum Mechanics
4.1. Position and Momentum in Noncommutative Phase Space
4.2. Angular Momenta in Noncommutative Phase Space
4.3. The Heisenberg Equation and Conservation Laws
4.4. Seiberg–Witten Map and the Heisenberg Representation
4.5. The Schrödinger Equation in Noncommutative Phase Space
4.6. Noncommutative Gauge Fields and the Pauli Equation
4.7. Noncommutativity-Induced Anomalous Velocity and Acceleration
4.8. Physical Interpretations of the Noncommutative Parameters
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takhtajan, L.A. Quantum Mechanics for Mathematicians; American Mathematical Society: Providence, RI, USA, 2008. [Google Scholar]
- Douglas, M.R.; Nekrasov, N.A. Noncommutative field theory. Rev. Mod. Phys. 2001, 73, 977–1029. [Google Scholar] [CrossRef]
- Szabo, R.J. Quantum field theory on noncommutative spaces. Phys. Rep. 2003, 378, 207–299. [Google Scholar] [CrossRef]
- Konechny, A.; Schwarz, A. Introduction to M(atrix) theory and noncommutative geometry. Phys. Rep. 2002, 360, 353–465. [Google Scholar] [CrossRef]
- Rosenbaum, M.; Vergara, J.D.; Juarez, L.R. Noncommutative field theory from quantum mechanical space-space noncommutativity. Phys. Lett. A 2007, 367, 1–10. [Google Scholar] [CrossRef]
- Snyder, H.S. Quantized space-time. Phys. Rev. 1947, 71, 38–41. [Google Scholar] [CrossRef]
- Gouba, L. A comparative review of four formulations of noncommutative quantum mechanics. Int. J. Mod. Phys. A 2016, 31, 1630025. [Google Scholar] [CrossRef]
- Yang, C.N. On Quantized space-time. Phys. Rev. 1947, 72, 874. [Google Scholar] [CrossRef]
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Fredenhagen, K. Gravity induced noncommutative spacetime. Rev. Math. Phys. 1955, 7, 559–565. [Google Scholar] [CrossRef]
- Matarrese, S.; Colpi, M.; Gorini, V.; Moschella, U. Dark Matter and Dark Energy; Springer Science+Business Media/Canopus Academic Publishing Limited: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Peebles, P.J.E. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Connes, A.; Marcolli, M. A walk in the noncommutative garden. In An Introduction to Noncommutative Geometry; Khalkhali, M., Marcolli, M., Eds.; World Scientific: Singapore, 2008; pp. 1–128. [Google Scholar] [CrossRef]
- Connes, A. Non-commutative differential geometry. Int. Hautes Etudes Sci. Publ. Math. 1985, 62, 257–360. [Google Scholar] [CrossRef]
- Doplicher, S.; Fredenhagen, K.; Roberts, J.E. The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 1995, 172, 187–220. [Google Scholar] [CrossRef]
- Delduc, F.; Duret, Q.; Gieres, F.; Lefrancois, M. Magnetic fields in noncommutative quantum mechanics. J. Phys. Conf. Series 2008, 103, 012020. [Google Scholar] [CrossRef]
- Kovačik, S.; Prešnajder, P. Magnetic monopoles in noncommutative quantum mechanics 2. J. Math. Phys. 2018, 59, 082107. [Google Scholar] [CrossRef]
- Bellucci, S.; Nersessian, A.; Sochichiu, C. Two phases of the noncommutative quantum mechanics. Phys. Lett. B 2001, 52, 345–349. [Google Scholar] [CrossRef]
- Gamboa, J.; Loewe, M.; Rojas, J.C. Noncommutative quantum mechanics. Phys. Rev. D 2001, 64, 067901. [Google Scholar] [CrossRef]
- Gamboa, J.; Loewe, M.; Mendez, F.; Rojas, J.C. Noncommutative quantum mechanics: The two dimensional central field. Int. J. Mod. Phys. A 2002, 17, 2555–2565. [Google Scholar] [CrossRef]
- Ezawa, Z.F. Quantum Hall Effects: Field theoretical Approach and Related Topics; World Scietific: Singapore, 2008. [Google Scholar] [CrossRef]
- Das, A.; Falomir, H.; Gamboa, J.; Mendez, F.; Nieto, M. Aharonov-Bohm effect in a class of noncommutative theories. Phys. Rev. D 2011, 84, 045002. [Google Scholar] [CrossRef]
- Liang, S.-D.; Li, H.; Huang, G.-Y. Detecting noncommutative phase space by the Aharonov-Bohm effect. Phys. Rev. A 2014, 90, 010102. [Google Scholar] [CrossRef]
- Liang, S.-D.; Harko, T. Towards an observable test of noncommutative quantum mechanics. Ukr. J. Phys. 2019, 64, 11. [Google Scholar] [CrossRef]
- Chaichiian, M.; Langvik, M.; Sasaki, S.; Tureanu, A. Gauge covariance of the Aharonov-Bohm phase in noncommutative quantum mechancs. Phys. Lett. A 2008, 666, 199–204. [Google Scholar] [CrossRef]
- Kokado, A.; Okamura, T.; Saito, T. Noncommutative quantum mechanics and the Seiberg-Witten map. Phys. Rev. D 2004, 69, 125007. [Google Scholar] [CrossRef]
- Basu, B.; Chowdhury, D.; Ghosh, S. Inertial spin Hall effect in noncommutative space. Phys. Lett. A 2013, 377, 1661–1667. [Google Scholar] [CrossRef]
- Bertolami, O.; Rosa, J.G.; de Aragao, C.M.L.; Castorina, P.; Zappala, D. Noncommutative gravitational quantum well. Phys. Rev. D 2005, 72, 025010. [Google Scholar] [CrossRef]
- Falomir, H.; Gamboa, J.; Lopez-Sarrion, J.; Mendez, F.; Pisani, P.A.G. Magnetic-dipole spin effects in noncommutative quantum mechanics. Phys. Lett. B 2009, 680, 384–386. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; Srivastava, Y.N.; Vitiello, G.; Widom, A. Quantum dissipation induced noncommutative geometry. Phys. Lett. A 2003, 11, 97–105. [Google Scholar] [CrossRef]
- Vilela Mendes, R. Quantum mechanics and non-commutative space-time . Phys. Lett. A 1996, 210, 232–240. [Google Scholar] [CrossRef]
- Harko, T.; Liang, S.-D. Energy-dependent noncommutative quantum mechanics. Eur. Phys. J. C 2019, 79, 300. [Google Scholar] [CrossRef]
- Seiberg, N.; Witten, E. Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory. Nucl. Phys. B 1994, 426, 19–52. [Google Scholar] [CrossRef]
- Seiberg, N.; Witten, E. String theory and noncommutative geometry. J. High Energy Phys. 1999, 1999, 032. [Google Scholar] [CrossRef]
- Bastos, C.; Bertolami, O. Berry phase in the gravitational quantum well and the Seiberg-Witten map. Phys. Lett. A 2008, 372, 5556–5559. [Google Scholar] [CrossRef]
- Bastos, C.; Bertolami, O.; Costa Dias, N.; Nuno Prata, J. Violation of the Robertson-Schrodinger uncertainty principle and noncommutative quantum mechanics. Phys. Rev. D 2012, 86, 105030. [Google Scholar] [CrossRef]
- Bastos, C.; Bernardini, A.E.; Bertolami, O.; Costa Dias, N.; Nuno Prata, J. Robertson-Schrödinger-type formulation of Ozawa’s noise-disturbance uncertainty principle. Phys. Rev. D 2014, 89, 042112. [Google Scholar] [CrossRef]
- Bastos, C.; Bernardini, A.E.; Bertolami, O.; Costa Dias, N.; Nuno Prata, J. Bell operator and Gaussian squeezed states in noncommutative quantum mechanics. Phys. Rev. D 2016, 93, 104055. [Google Scholar] [CrossRef]
- Ho, P.-M.; Kao, H.-C. Noncommutative quantum mechanics from noncommutative quantum field theory. Phys. Rev. Lett. 2002, 88, 151602. [Google Scholar] [CrossRef]
- Nambu, Y. Generalized Hamiltonian dynamicse. Phys. Rev. D 1973, 7, 2405–2412. [Google Scholar] [CrossRef]
- Bayen, F.; Flato, M. Remarks concerning Nambu’s generalized mechanics. Phys. Rev. D 1975, 11, 3049–3053. [Google Scholar] [CrossRef]
- Estabrook, F.B. Comments on generalized Hamiltonian dynamics. Phys. Rev. D 1973, 8, 2741. [Google Scholar] [CrossRef]
- Mukunda, N.; Sudarshan, E.C.G. Relation between Nambu and Hamiltonian mechanics. Phys. Rev. D 1976, 13, 2846–2850. [Google Scholar] [CrossRef]
- Kálnay, A.J.; Tascón, R. Lagrange, Hamilton-Dirac, and Nambu mechanics. Phys. Rev. D 1978, 17, 1552–1562. [Google Scholar] [CrossRef]
- Curtright, T.; Zachos, C. Classical and quantum Nambu mechanics. Phys. Rev. D 2003, 68, 085001. [Google Scholar] [CrossRef]
- Awata, H.; Li, M.; Minic, D.; Yoneya, T. On the quantization of Nambu brackets. J. High Eng. Phys. 2001, 02, 013. [Google Scholar] [CrossRef]
- Sahoo, D.; Valsakumar, M.C. Nambu mechanics and its quantization. Phys. Rev. A 1992, 46, 4410–4412. [Google Scholar] [CrossRef] [PubMed]
- Zachos, C.K.; Curtright, T.L. Deformation quantization of Nambu mechanics. AIP Conf. Proc. 2003, 672, 183–196. [Google Scholar]
- Hirayama, M. Realization of Nambu mechanics: A particle interacting with an SU(2) monopole. Phys. Rev. D 1977, 16, 530–532. [Google Scholar] [CrossRef]
- Hirayama, M.; Tze, H.-C. Nambu mechanics of non-Abelian dyons. Phys. Rev. D 1978, 17, 546. [Google Scholar] [CrossRef]
- Minic, D.; Takeuchi, T.; Tze, C.-H. Interference and oscillation in Nambu quantum mechanics. Phys. Rev. D 1978, 17, 546–556. [Google Scholar] [CrossRef]
- Angulo, R.; Codriansky, S.; Gonzalez-Bernardo, C.A.; Kalnay, A.; Rodriguez-Bernardo, F.P.J.; Rodriguez-Nunez, J.J.; Tello-llanos, R.A. Superconductivity and the existence of Nambu’s three-dimensional phase space mechanics. Phys. Lett. A 1984, 104, 106–108. [Google Scholar] [CrossRef]
- Takhtajan, L. On foundation of the generalized Nambu mechanics. Commun. Math. Plays. 1994, 160, 295–315. [Google Scholar] [CrossRef]
- Fecko, M. On a geometrical formulation of the Nambu dynamics. J. Math. Phys. 1992, 33, 926–929. [Google Scholar] [CrossRef]
- Prodan, E.; Schulz-Baldes, H. Bulk and Boundary Invariants for Complex Topological Insulators: From K-theory to Physics; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Agostini, A.; Amelino-Camelia, G.; D’Andrea, F. Hopf-algebra description of noncommutative-space-time symmetries. Int. J. Mod. Phys. A 2004, 19, 5187–5220. [Google Scholar] [CrossRef]
- Arzano, M. ; J. Kowalski-Glikman, J. Deformations of Spacetime Symmetries, Gravity: Group-Valued Momenta, and Non-Commutative Fields; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Arzano, M.; Kowalski-Glikman, J. An introduction to κ-deformed symmetries, phase spaces and field theory. Symmetry 2021, 13, 946. [Google Scholar] [CrossRef]
- Deriglazov, A. Classical Mechanics, Hamiltonian and Lagranian Formulation; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Wachter, A. Relativistic Quantum Mechanics; Springer Science+Business Media B.V.: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Sucre, M.G.; Kalnay, A. On the statistics consistent with Nambu’s new quantum rules: Quarks? Int. J. Theor. Phys. 1975, 12, 149–151. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L. The principle of relative locality. Phys. Rev. D 2011, 84, 084010. [Google Scholar] [CrossRef]
- Liang, S.-D. Klein-Gordon theory in noncommutative phase space. Symmetry 2023, 15, 367. [Google Scholar] [CrossRef]
- Lake, M.J.; Miller, M.; Ganardi, R.F.; Liu, Z.; Liang, S.-D.; Paterek, T. Generalised uncertainty relations from superpositions of geometries. Class. Quantum Grav. 2019, 36, 155012. [Google Scholar] [CrossRef]
- Lake, M.J.; Miller, M.; Liang, S.-D. Generalised uncertainty relations for angular momentum and spin in quantum geometry. Universe 2020, 6, 56. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.-D.; Lake, M.J. An Introduction to Noncommutative Physics. Physics 2023, 5, 436-460. https://doi.org/10.3390/physics5020031
Liang S-D, Lake MJ. An Introduction to Noncommutative Physics. Physics. 2023; 5(2):436-460. https://doi.org/10.3390/physics5020031
Chicago/Turabian StyleLiang, Shi-Dong, and Matthew J. Lake. 2023. "An Introduction to Noncommutative Physics" Physics 5, no. 2: 436-460. https://doi.org/10.3390/physics5020031
APA StyleLiang, S. -D., & Lake, M. J. (2023). An Introduction to Noncommutative Physics. Physics, 5(2), 436-460. https://doi.org/10.3390/physics5020031