Scalar QED Model for Polarizable Particles in Thermal Equilibrium or in Hyperbolic Motion in Vacuum
Abstract
:1. Introduction
2. Hamiltonian and Equations of Motion
3. Frictional Force
4. Momentum Fluctuations and Thermal Equilibrium
5. Hyperbolic Motion in Vacuum
5.1. Momentum Fluctuations
5.2. Frictional Force
6. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Equations of Motion
Appendix B. Derivation of ξ(ωk, Ω) and η(ωk, Ω)
References
- O’Connell, R.F. The demise of Unruh radiation. Mod. Phys. Lett. A 2020, 35, 2050329. [Google Scholar] [CrossRef]
- Raine, D.J.; Sciama, D.W.; Grove, P.G. Does a uniformly accelerated charge radiate? Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1991, 435, 205–215. Available online: https://www.jstor.org/stable/52011 (accessed on 10 January 2024).
- Ford, G.W.; O’Connell, R.F. Is there Unruh radiation? Phys. Lett. A 2006, 350, 17–26. [Google Scholar] [CrossRef]
- Davies, P.C.W. Scalar production in Schwarzschild and Rindler metrics. J. Phys. A Math. Gen. 1975, 8, 609–616. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870–892. [Google Scholar] [CrossRef]
- Einstein, A.; Hopf, L. Statistische Untersuchung der Bewegung eines Resonators in einem Strahlungsfeld. Ann. d. Phys. 1910, 338, 1105–1115, English translation: Statistical investigation of a resonator’s motion in a radiation field. In The Collected Papers of Albert Einstein. Volume 3: The Swiss Years: Writings 1909–1911 (English Translation Supplement); Schulmann, R., Kox, A.J., Renn, J., Eds.; Princeton University Press: Princeton, NJ, USA, 1994; pp. 220–230. Available online: https://einsteinpapers.press.princeton.edu/vol3-trans/234 (accessed on 10 January 2024). [CrossRef]
- Einstein, A. Zur Quantentheorie der Strahlung. Phys. Z. 1917, 18, 121–128, English translation: On the quantum theory of radiation. In The Collected Papers of Albert Einstein. Volume 6: The Berlin Years: Writings, 1914–1917 (English Translation Supplement); Kox, A.J., Schulmann, R., Eds.; Princeton University Press: Princeton, NJ, USA, 1997; pp. 220–233. Available online: https://einsteinpapers.press.princeton.edu/vol6-trans/232 (accessed on 10 January 2024).
- Milton, K.A.; Day, H.; Li, Y.; Guo, X.; Kennedy, G. Self-force on moving electric and magnetic dipoles: Dipole radiation, Vavilov-Cerenkov radiation, friction with a conducting surface, and the Einstein-Hopf effect. Phys. Rev. Res. 2020, 2, 043347. [Google Scholar] [CrossRef]
- Sinha, K.; Milonni, P.W. Dipoles in blackbody radiation: Momentum fluctuations, decoherence, and drag force. J. Phys. B At. Mol. Opt. Phys. 2022, 55, 204002. [Google Scholar] [CrossRef]
- Wang, Q.; Unruh, W.G. Motion of a mirror under infinitely fluctuating quantum vacuum stress. Phys. Rev. D 2014, 89, 085009. [Google Scholar] [CrossRef]
- Sinha, K.; Lin, S.-Y.; Hu, B.L. Mirror-field entanglement in a microscopic model for quantum optomechanics. Phys. Rev. A 2015, 92, 023852. [Google Scholar] [CrossRef]
- Sinha, K. A Microscopic Model for Quantum Optomechanics. Ph.D Thesis, University of Maryland, College Park, MD, USA, 2015. [Google Scholar] [CrossRef]
- Milonni, P.W. Radiation reaction and the nonrelativistic theory of the electron. Phys. Lett. A 1981, 82, 225–226. [Google Scholar] [CrossRef]
- Pauli, W. Theory of Relativity; Pergamon Press Ltd.: New York, NY, USA, 1958; Section 49; Available online: https://archive.org/details/theoryofrelativi00paul/ (accessed on 10 January 2024).
- Ford, G.W.; O’Connell, R.F. Lorentz transformation of blackbody radiation. Phys. Rev. E 2013, 88, 044101. [Google Scholar] [CrossRef] [PubMed]
- Milonni, P.W.; Eberly, J.H. Laser Physics; John Wiley & Sons, Inc.: New York, NY, USA, 2010; Section 8.2. [Google Scholar] [CrossRef]
- Einstein, A.; Hopf, L. Über einen Satz der Wahrscheinlichkeitsrechnung und seine Anwendung in der Strahlungstheorie. Ann. d. Phys. 1910, 338, 1096–1104, English translation: On a theorem of the probability calculus and its application in the theory of radiation. In The Collected Papers of Albert Einstein. Volume 3: The Swiss Years: Writings 1909–1911 (English Translation Supplement); Schulmann, R., Kox, A.J., Renn, J., Eds.; Princeton University Press: Princeton, NJ, USA, 1994; pp. 211–219. Available online: https://einsteinpapers.press.princeton.edu/vol3-trans/225 (accessed on 10 January 2024). [CrossRef]
- Alsing, P.M.; Milonni, P.W. Simplified derivation of the Hawking–Unruh temperature for an accelerated observer in vacuum. Am. J. Phys. 2004, 72, 1524–1529. [Google Scholar] [CrossRef]
- Cetto, A.M.; de la Peña, L. Real vacuum fluctuations and virtual Unruh radiation. Fortschr. Phys. 2017, 65, 1600039. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, K.; Milonni, P.W. Scalar QED Model for Polarizable Particles in Thermal Equilibrium or in Hyperbolic Motion in Vacuum. Physics 2024, 6, 356-367. https://doi.org/10.3390/physics6010023
Sinha K, Milonni PW. Scalar QED Model for Polarizable Particles in Thermal Equilibrium or in Hyperbolic Motion in Vacuum. Physics. 2024; 6(1):356-367. https://doi.org/10.3390/physics6010023
Chicago/Turabian StyleSinha, Kanu, and Peter W. Milonni. 2024. "Scalar QED Model for Polarizable Particles in Thermal Equilibrium or in Hyperbolic Motion in Vacuum" Physics 6, no. 1: 356-367. https://doi.org/10.3390/physics6010023
APA StyleSinha, K., & Milonni, P. W. (2024). Scalar QED Model for Polarizable Particles in Thermal Equilibrium or in Hyperbolic Motion in Vacuum. Physics, 6(1), 356-367. https://doi.org/10.3390/physics6010023