Long-Term Optical Monitoring of Broad-Line AGNs (LoTerm AGN): Case Study of NGC 3516
Abstract
:1. Introduction
2. Observations, Data Reduction and Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGNs | Active galactic nuclei |
ASV | Astronomical Station Vidojevic |
BTA | Big Telescope Alt-azimuth |
BLR | Broad line region |
CL AGN | Changing-look AGN |
Cop | Copernicus |
FWHM | Full-width half-maximum |
GHO | Guillermo Haro Observatory |
GR | Grism |
INAF | Italian National Institute for Astrophysics |
LoTerm AGN | Long-term monitoring of AGN |
LSST | Legacy Survey in Space and Time |
OAPd | Astronomical Observatory of Padova |
OSN | Observatory Sierra Nevada |
SAO | Special Astrophysical Observatory |
SMBH | Super massive black hole |
SRM | root mean square |
VPH/G | volume phase holographic grating |
References
- Netzer, H. The Physics and Evolution of Active Galactic Nuclei; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Netzer, H. Revisiting the unified model of active galactic nuclei. Annu. Rev. Astron. Astrophys. 2015, 53, 365–408. [Google Scholar] [CrossRef]
- Osterbrock, D.E.; Ferland, G.J. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei; University Science Books: Sausalito, CA, USA, 2006; Available online: https://archive.org/details/astrophysicsofga0000oste (accessed on 25 November 2023).
- Lyutyĭ, V.M.; Oknyanskiĭ, V.L.; Chuvaev, K.K. NGC 4151: Sy2 in a deep photometric minimum. Sov. Astron. Lett. 1984, 10, 335–336. Available online: https://ui.adsabs.harvard.edu/abs/1984PAZh...10..803L/abstract (accessed on 25 November 2023).
- Kollatschny, W.; Fricke, K.J. The fading of the Seyfert galaxy F-9. Astron. Astrophys. 1985, 146, L11–L14. Available online: https://ui.adsabs.harvard.edu/abs/1985A%26A...146L..11K/abstract (accessed on 25 November 2023).
- Matt, G.; Guainazzi, M.; Maiolino, R. Changing look: From Compton-thick to Compton-thin, or the rebirth of fossil active galactic nuclei. Mon. Not. R. Astron. Soc. 2003, 342, 422–426. [Google Scholar] [CrossRef]
- Risaliti, G.; Miniutti, G.; Elvis, M.; Fabbiano, G.; Salvati, M.; Baldi, A.; Braito, V.; Bianchi, S.; Matt, G.; Reeves, J.; et al. Variable partial covering and a relativistic iron line in NGC 1365. Astrophys. J. 2009, 696, 160–171. [Google Scholar] [CrossRef]
- Denney, K.D.; De Rosa, G.; Croxall, K.; Gupta, A.; Bentz, M.C.; Fausnaugh, M.M.; Grier, C.J.; Martini, P.; Mathur, S.; Peterson, B.M.; et al. The typecasting of active galactic nuclei: Mrk 590 no longer fits the role. Astrophys. J. 2014, 796, 134. [Google Scholar] [CrossRef]
- Oknyansky, V.L.; Winkler, H.; Tsygankov, S.S.; Lipunov, V.M.; Gorbovskoy, E.S.; van Wyk, F.; Buckley, D.A.H.; Tyurina, N.V. Discovery of more changing look events in NGC 1566. Odessa Astron. Publ. 2019, 32, 75–78. [Google Scholar] [CrossRef]
- Oknyansky, V.L.; Winkler, H.; Tsygankov, S.S.; Lipunov, V.M.; Gorbovskoy, E.S.; van Wyk, F.; Buckley, D.A.H.; Tyurina, N.V. New changing look case in NGC 1566. Mon. Not. R. Astron. Soc. 2019, 483, 558–564. [Google Scholar] [CrossRef]
- Trakhtenbrot, B.; Arcavi, I.; MacLeod, C.L.; Ricci, C.; Kara, E.; Graham, M.L.; Stern, D.; Harrison, F.A.; Burke, J.; Hiramatsu, D.; et al. 1ES 1927+654: An AGN caught changing look on a timescale of months. Astrophys. J. 2019, 883, 94. [Google Scholar] [CrossRef]
- Megan Urry, C.; Padovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803–845. [Google Scholar] [CrossRef]
- Ricci, C.; Trakhtenbrot, B. Changing-look active galactic nuclei. arXiv 2022, arXiv:2211.05132. [Google Scholar] [CrossRef]
- Stern, D.; McKernan, B.; Graham, M.J.; Ford, K.E.S.; Ross, N.P.; Meisner, A.M.; Assef, R.J.; Baloković, M.; Brightman, M.; Dey, A.; et al. A Mid-IR selected changing-look quasar and physical scenarios for abrupt AGN fading. Astrophys. J. 2018, 864, 27. [Google Scholar] [CrossRef]
- Elitzur, M. On the unification of active galactic nuclei. Astrophys. J. Lett. 2012, 747, L33. [Google Scholar] [CrossRef]
- Wang, T.G.; Zhou, H.Y.; Komossa, S.; Wang, H.Y.; Yuan, W.; Yang, C. Extreme coronal line emitters: Tidal disruption of stars by massive black holes in galactic nuclei? Astrophys. J. 2012, 749, 115. [Google Scholar] [CrossRef]
- Campana, S.; Mainetti, D.; Colpi, M.; Lodato, G.; D’Avanzo, P.; Evans, P.A.; Moretti, A. Multiple tidal disruption flares in the active galaxy IC 3599. Astron. Astrophys. 2015, 581, A17. [Google Scholar] [CrossRef]
- Komossa, S.; Grupe, D.; Schartel, N.; Gallo, L.; Gomez, J.L.; Kollatschny, W.; Kriss, G.; Leighly, K.; Longinotti, A.L.; Parker, M.; et al. The extremes of AGN variability. In Proceedings of the New Frontiers in Black Hole Astrophysics, Ljubljana, Slovenia, 12–16 September 2016; Gomboc, A., Ed.; International Astronomical Union: Paris, France, 2017; pp. 168–171. [Google Scholar] [CrossRef]
- Noda, H.; Done, C. Explaining changing-look AGN with state transition triggered by rapid mass accretion rate drop. Mon. Not. R. Astron. Soc. 2018, 480, 3898–3906. [Google Scholar] [CrossRef]
- Sniegowska, M.; Czerny, B.; Bon, E.; Bon, N. Possible mechanism for multiple changing-look phenomena in active galactic nuclei. Astron. Astrophys. 2020, 641, A167. [Google Scholar] [CrossRef]
- Wang, J.M.; Bon, E. Changing-look active galactic nuclei: Close binaries of supermassive black holes in action. Astron. Astrophys. 2020, 643, L9. [Google Scholar] [CrossRef]
- Guo, H.; Shen, Y.; He, Z.; Wang, T.; Liu, X.; Wang, S.; Sun, M.; Yang, Q.; Kong, M.; Sheng, Z. Understanding broad Mg II variability in quasars with photoionization: Implications for reverberation mapping and changing-look quasars. Astrophys. J. 2020, 888, 58. [Google Scholar] [CrossRef]
- Runco, J.N.; Cosens, M.; Bennert, V.N.; Scott, B.; Komossa, S.; Malkan, M.A.; Lazarova, M.S.; Auger, M.W.; Treu, T.; Park, D. Broad Hβ Emission-line variability in a sample of 102 local active galaxies. Astrophys. J. 2016, 821, 33. [Google Scholar] [CrossRef]
- MacLeod, C.L.; Ross, N.P.; Lawrence, A.; Goad, M.; Horne, K.; Burgett, W.; Chambers, K.C.; Flewelling, H.; Hodapp, K.; Kaiser, N.; et al. A systematic search for changing-look quasars in SDSS. Mon. Not. R. Astron. Soc. 2016, 457, 389–404. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, X.B.; Fan, X.; Jiang, L.; McGreer, I.; Shangguan, J.; Yao, S.; Wang, B.; Joshi, R.; Green, R.; et al. Discovery of 21 new changing-look AGNs in the Northern Sky. Astrophys. J. 2018, 862, 109. [Google Scholar] [CrossRef]
- Graham, M.J.; Ross, N.P.; Stern, D.; Drake, A.J.; McKernan, B.; Ford, K.E.S.; Djorgovski, S.G.; Mahabal, A.A.; Glikman, E.; Larson, S.; et al. Understanding extreme quasar optical variability with CRTS—II. Changing-state quasars. Mon. Not. R. Astron. Soc. 2020, 491, 4925–4948. [Google Scholar] [CrossRef]
- Sánchez-Sáez, P.; Lira, H.; Martí, L.; Sánchez-Pi, N.; Arredondo, J.; Bauer, F.E.; Bayo, A.; Cabrera-Vives, G.; Donoso-Oliva, C.; Estévez, P.A.; et al. Searching for changing-state AGNs in massive data sets. I. Applying deep learning and anomaly-detection techniques to find AGNs with anomalous variability behaviors. Astron. J. 2021, 162, 206. [Google Scholar] [CrossRef]
- Hon, W.J.; Wolf, C.; Onken, C.A.; Webster, R.; Auchettl, K. SkyMapper colours of Seyfert galaxies and changing-look AGN - II. Newly discovered changing-look AGN. Mon. Not. R. Astron. Soc. 2022, 511, 54–70. [Google Scholar] [CrossRef]
- López-Navas, E.; Martínez-Aldama, M.L.; Bernal, S.; Sánchez-Sáez, P.; Arévalo, P.; Graham, M.J.; Hernández-García, L.; Lira, P.; Rojas Lobos, P.A. Confirming new changing-look AGNs discovered through optical variability using a random forest-based light-curve classifier. Mon. Not. R. Astron. Soc. 2022, 513, L57–L62. [Google Scholar] [CrossRef]
- Temple, M.J.; Ricci, C.; Koss, M.J.; Trakhtenbrot, B.; Bauer, F.E.; Mushotzky, R.; Rojas, A.F.; Caglar, T.; Harrison, F.; Oh, K.; et al. BASS XXXIX: Swift-BAT AGN with changing-look optical spectra. Mon. Not. R. Astron. Soc. 2023, 518, 2938–2953. [Google Scholar] [CrossRef]
- Ivezić, Ž.; Kahn, S.M.; Tyson, J.A.; Abel, B.; Acosta, E.; Allsman, R.; Alonso, D.; AlSayyad, Y.; Anderson, S.F.; Andrew, J.; et al. LSST: From science drivers to reference design and anticipated data products. Astrophys. J. 2019, 873, 111. [Google Scholar] [CrossRef]
- Kaspi, S.; Smith, P.S.; Netzer, H.; Maoz, D.; Jannuzi, B.T.; Giveon, U. Reverberation measurements for 17 quasars and the size-mass-luminosity relations in active galactic nuclei. Astrophys. J. 2000, 533, 631–649. [Google Scholar] [CrossRef]
- Bentz, M.C.; Walsh, J.L.; Barth, A.J.; Baliber, N.; Bennert, V.N.; Canalizo, G.; Filippenko, A.V.; Ganeshalingam, M.; Gates, E.L.; Greene, J.E.; et al. The Lick AGN Monitoring Project: Broad-line region radii and black hole masses from reverberation mapping of Hβ. Astrophys. J. 2009, 705, 199–217. [Google Scholar] [CrossRef]
- De Rosa, G.; Peterson, B.M.; Ely, J.; Kriss, G.A.; Crenshaw, D.M.; Horne, K.; Korista, K.T.; Netzer, H.; Pogge, R.W.; Arévalo, P.; et al. Space Telescope and Optical Reverberation Mapping Project.I. Ultraviolet observations of the Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope. Astrophys. J. 2015, 806, 128. [Google Scholar] [CrossRef]
- Barth, A.J.; Bennert, V.N.; Canalizo, G.; Filippenko, A.V.; Gates, E.L.; Greene, J.E.; Li, W.; Malkan, M.A.; Pancoast, A.; Sand, D.J.; et al. The Lick AGN Monitoring Project 2011: Spectroscopic campaign and emission-line light curves. Astrophys. J. Suppl. S. 2015, 217, 26. [Google Scholar] [CrossRef]
- Woo, J.H.; Son, D.; Gallo, E.; Hodges-Kluck, E.; Jeon, Y.; Shin, J.; Bae, H.J.; Cho, H.; Cho, W.; Kang, D.; et al. Seoul National University AGN Monitoring Project. I. Strategy and sample. J. Korean Astron. Soc. 2019, 52, 109–119. [Google Scholar] [CrossRef]
- Oknyansky, V.L.; Brotherton, M.S.; Tsygankov, S.S.; Dodin, A.V.; Bao, D.-W.; Zhao, B.-X.; Du, P.; Burlak, M.A.; Ikonnikova, N.P.; Tatarnikov, A.M.; et al. Multiwavelength monitoring and reverberation mapping of a changing look event in the Seyfert galaxy NGC 3516. Mon. Not. R. Astron. Soc. 2021, 505, 1029–1045. [Google Scholar] [CrossRef]
- Kollatschny, W.; Grupe, D.; Parker, M.L.; Ochmann, M.W.; Schartel, N.; Romero-Colmenero, E.; Winkler, H.; Burlak, M.A.; Ikonnikova, N.P.; Tatarnikov, A.M.; et al. The outburst of the changing-look AGN IRAS 23226-3843 in 2019. Astron. Astrophys. 2023, 670, A103. [Google Scholar] [CrossRef]
- Oknyansky, V.L.; Brotherton, M.S.; Tsygankov, S.S.; Dodin, A.V.; Tatarnikov, A.M.; Du, P.; Bao, D.-W.; Burlak, M.A.; Ikonnikova, N.P.; Lipunov, V.M.; et al. Long-term multiwavelength monitoring and reverberation mapping of NGC 2617 during a changing-look event. Mon. Not. R. Astron. Soc. 2023, 525, 2571–2584. [Google Scholar] [CrossRef]
- Homan, D.; Lawrence, A.; Ward, M.; Bruce, A.; Landt, H.; MacLeod, C.; Elvis, M.; Wilkes, B.; Huchra, J.P.; Peterson, B.M. The long-term broad-line responsivity in MKN 110. Mon. Not. R. Astron. Soc. 2023, 519, 1745–1763. [Google Scholar] [CrossRef]
- Shapovalova, A.I.; Popović, L.Č.; Afanasiev, V.L.; Ilić, D.; Kovačević, A.; Burenkov, A.N.; Chavushyan, V.H.; Marčeta-Mandić, S.; Spiridonova, O.; Valdes, J.R.; et al. Long-term optical spectral monitoring of a changing-look active galactic nucleus NGC 3516—I. Continuum and broad-line flux variability. Mon. Not. R. Astron. Soc. 2019, 485, 4790–4803. [Google Scholar] [CrossRef]
- Peterson, B.M.; Ferrarese, L.; Gilbert, K.M.; Kaspi, S.; Malkan, M.A.; Maoz, D.; Merritt, D.; Netzer, H.; Onken, C.A.; Pogge, R.W.; et al. Central masses and broad-line region sizes of active galactic Nuclei. II. A homogeneous analysis of a large reverberation-mapping database. Astrophys. J. 2004, 613, 682–699. [Google Scholar] [CrossRef]
- Dalla Bontà, E.; Peterson, B.M.; Bentz, M.C.; Brandt, W.N.; Ciroi, S.; De Rosa, G.; Fonseca Alvarez, G.; Grier, C.J.; Hall, P.B.; Hernández Santisteban, J.V.; et al. The Sloan Digital Sky Survey Reverberation Mapping Project: Estimating Masses of Black Holes in Quasars with Single-epoch Spectroscopy. Astrophys. J. 2020, 903, 112. [Google Scholar] [CrossRef]
- Popović, L.Č. Broad spectral lines in AGNs and supermassive black hole mass measurements. Open Astron. 2020, 29, 1–14. [Google Scholar] [CrossRef]
- Cherepashchuk, A.M.; Lyutyi, V.M. Rapid variations of Hα intensity in the nuclei of Seyfert galaxies NGC 4151, 3516, 1068. Astrophys. Lett. 1973, 13, 165–168. Available online: https://ui.adsabs.harvard.edu/abs/1973ApL....13..165C/abstract (accessed on 25 November 2023).
- Blandford, R.D.; McKee, C.F. Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. Astrophys. J. 1982, 255, 419–439. [Google Scholar] [CrossRef]
- Cackett, E.M.; Bentz, M.C.; Kara, E. Reverberation mapping of active galactic nuclei: From X-ray corona to dusty torus. iScience 2021, 24, 102557. [Google Scholar] [CrossRef]
- Peterson, B.M.; Horne, K. Echo mapping of active galactic nuclei. Astron. Notes/Astron. Nachr. 2004, 325, 248–251. [Google Scholar] [CrossRef]
- Andrillat, Y.; Souffrin, S. Variations du Spectre du Noyau de la Galaxie de Seyfert NGC 3516. Astrophys. Lett. 1968, 1, 111–119. Available online: https://ui.adsabs.harvard.edu/abs/1968ApL.....1..111A/abstract (accessed on 25 November 2023).
- Lyutyi, V.M.; Doroshenko, V.T. Optical variability of the nuclei of the Seyfert galaxies NGC 3516 and NGC 5548 on time scales from 20 years to 20 minutes. Astron. Lett. 1993, 19, 405–415. Available online: https://ui.adsabs.harvard.edu/abs/1993AstL...19..405L/abstract (accessed on 25 November 2023).
- Maoz, D.; Markowitz, A.; Edelson, R.; Nandra, K. X-ray versus optical variations in the Seyfert 1 nucleus NGC 3516: A puzzling disconnectedness. Astron. J. 2002, 124, 1988–1994. [Google Scholar] [CrossRef]
- Denney, K.D.; Peterson, B.M.; Pogge, R.W.; Adair, A.; Atlee, D.W.; Au-Yong, K.; Bentz, M.C.; Bird, J.C.; Brokofsky, D.J.; Chisholm, E.; et al. Reverberation mapping measurements of black hole masses in six local Seyfert galaxies. Astrophys. J. 2010, 721, 715–737. [Google Scholar] [CrossRef]
- Mehdipour, M.; Branduardi-Raymont, G.; Page, M.J. The warm absorber and X-ray variability of the Seyfert 1 galaxy NGC 3516 as seen by the XMM-Newton RGS. Astron. Astrophys. 2010, 514, A100. [Google Scholar] [CrossRef]
- Noda, H.; Minezaki, T.; Watanabe, M.; Kokubo, M.; Kawaguchi, K.; Itoh, R.; Morihana, K.; Saito, Y.; Nakao, H.; Imai, M.; et al. X-ray and optical correlation of type I Seyfert NGC 3516 studied with Suzaku and Japanese ground-based telescopes. Astrophys. J. 2016, 828, 78. [Google Scholar] [CrossRef]
- Feng, H.-C.; Hu, C.; Li, S.-S.; Liu, H.T.; Bai, J.M.; Xing, L.-F.; Wang, W.-Y.; Yang, Z.-X.; Xiao, M.; Lu, K.-X. Reverberation mapping of changing-look active galactic nucleus NGC 3516. Astrophys. J. 2021, 909, 18. [Google Scholar] [CrossRef]
- Mehdipour, M.; Kriss, G.A.; Brenneman, L.W.; Costantini, E.; Kaastra, J.S.; Branduardi-Raymont, G.; Di Gesu, L.; Ebrero, J.; Mao, J. Changing-look event in NGC 3516: Continuum or obscuration variability? Astrophys. J. 2022, 925, 84. [Google Scholar] [CrossRef]
- Armijos-Abendaño, J.; López, E.; Llerena, M.; Logan, C.H.A. Broad-line region clouds orbiting an AGN sample. Mon. Not. R. Astron. Soc. 2022, 514, 1535–1547. [Google Scholar] [CrossRef]
- Popović, L.Č.; Ilić, D.; Burenkov, A.; Patiño Alvarez, V.M.; Marčeta-Mandić, S.; Kovačević-Dojčinović, J.; Shablovinskaya, E.; Kovačević, A.B.; Marziani, P.; Chavushyan, V.; et al. Long-term optical spectral monitoring of a changing-look active galactic nucleus NGC 3516. II. Broad-line profile variability. Astron. Astrophys. 2023, 675, A178. [Google Scholar] [CrossRef]
- Ilić, D.; Oknyansky, V.; Popović, L.Č.; Tsygankov, S.S.; Belinski, A.A.; Tatarnikov, A.M.; Dodin, A.V.; Shatsky, N.I.; Ikonnikova, N.P.; Rakić, N.; et al. A flare in the optical spotted in the changing-look Seyfert NGC 3516. Astron. Astrophys. 2020, 638, A13. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Amirkhanyan, V.R.; Uklein, R.I.; Perepelitsyn, A.E.; Malygin, E.A.; Shablovinskaya, E.S.; Afanasieva, I.V. Universal focal reducer for small telescopes. Astron. Notes/Astron. Nachr. 2022, 343, e210104. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Malygin, E.A.; Shablovinskaya, E.S.; Uklein, R.I.; Amirkhanyan, V.R.; Perepelitsyn, A.E.; Afanasieva, I.V. Small telescopes being effective: MAGIC or not? RAS Tech. Instrum. 2023, 2, 657–672. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Moiseev, A.V. The SCORPIO universal focal reducer of the 6-m telescope. Astron. Lett. 2005, 31, 194–204. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Moiseev, A.V. Scorpio on the 6 m telescope: Current state and perspectives for spectroscopy of galactic and extragalactic objects. Open Astron./Balt. Astron. 2011, 20, 363–370. [Google Scholar] [CrossRef]
- Ciroi, S.; DiMille, F.; Rafanelli, P.; Cracco, V.; LaMura, G. The scientific use of the 1.2-m Galileo telescope of the Asiago Astrophysical Observatory after its recent refurbishment. Contrib. Astron. Obs. Skalnaté Pleso 2014, 43, 362–367. Available online: https://ui.adsabs.harvard.edu/abs/2014CoSka..43..362C/abstract (accessed on 25 November 2023).
- Lalovic, A.; Vince, I. Stellar spectrograph of the Belgrade Astronomical Observatory. Publ. Obs. Astron. Belgr. 2006, 80, 293–297. Available online: https://ui.adsabs.harvard.edu/abs/2006POBeo..80..293L/abstract (accessed on 25 November 2023).
- Rakić, N. Kinematics of the H α and H β broad-line region in an SDSS sample of type-1 AGNs. Mon. Not. R. Astron. Soc. 2022, 516, 1624–1634. [Google Scholar] [CrossRef]
- Ilić, D.; Rakić, N.; Popović, L.Č. Fantastic fits with fantasy of active galactic nuclei spectra: Exploring the Fe II emission near the Hα line. Astrophys. J. Suppl. S. 2023, 267, 19. [Google Scholar] [CrossRef]
- Marziani, P.; Dultzin, D.; Sulentic, J.W.; Del Olmo, A.; Negrete, C.A.; Martínez-Aldama, M.L.; D’Onofrio, M.; Bon, E.; Bon, N.; Stirpe, G.M. A main sequence for quasars. Front. Astron. Space Sci. 2018, 5, 6. [Google Scholar] [CrossRef]
- Richards, G.T.; Lacy, M.; Storrie-Lombardi, L.J.; Hall, P.B.; Gallagher, S.C.; Hines, D.C.; Fan, X.; Papovich, C.; Vanden Berk, D.E.; Trammell, G.B.; et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. S. 2006, 166, 470–497. [Google Scholar] [CrossRef]
- Aghanim, N.; et al. [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Du, P.; Brotherton, M.S.; Wang, K.; Huang, Z.P.; Hu, C.; Kasper, D.H.; Chick, W.T.; Nguyen, M.L.; Maithil, J.; Hand, D.; et al. Monitoring AGNs with Hβ asymmetry. I. First results: Velocity-resolved reverberation mapping. Astrophys. J. 2018, 869, 142. [Google Scholar] [CrossRef]
- Edelson, R.; Koratkar, A.; Nandra, K.; Goad, M.; Peterson, B.M.; Collier, S.; Krolik, J.; Malkan, M.; Maoz, D.; O’Brien, P.; et al. Intensive HST, RXTE, and ASCA monitoring of NGC 3516: Evidence against thermal reprocessing. Astrophys. J. 2000, 534, 180–188. [Google Scholar] [CrossRef]
- Oknyansky, V. Changing looks of the nucleus of the Seyfert galaxy NGC 1566 compared with other changing-look AGNs. Astron. Notes/Astron. Nachr. 2022, 343, e210080. [Google Scholar] [CrossRef]
- Zetzl, M.; Kollatschny, W.; Ochmann, M.W.; Grupe, D.; Haas, M.; Ramolla, M.; Chelouche, D.; Kaspi, S.; Schartel, N. Long-term optical, UV, and X-ray continuum variations in the changing-look AGN HE 1136-2304. Astron. Astrophys. 2018, 618, A83. [Google Scholar] [CrossRef]
Telescope | Instrument | Gratings | Status * |
---|---|---|---|
1 m Zeiss (SAO) | MAGIC | VPHG600@500 | Operational |
6 m BTA (SAO) | SCORPIO-1, SCORPIO-2 | VPHG550G, VPHG1200@540 | On demand |
2.1 m Telescope (GHO) | Boller & Chivens | 150 l/mm | Operational |
1.8 m Copernico (Cop) | AFOSC | GR04, GR07, VPH7 | Operational |
1.2 m Galileo (OAPd) | Boller & Chivens | 150/300/600/1200 l/mm | Operational |
1.4 m Milanković (ASV) | - | - | In plan |
1.5 m T150 (OSN) | - | - | In plan |
Date | Telescope | Grating | Exposure [s] | Slit Width [arcsec] | Seeing [arcsec] | Weather |
---|---|---|---|---|---|---|
2020-02-18 | 2.1 m GHO | 150 l/mm | 3 × 1800 | 2.5 | 2.2 | Good |
2020-02-21 | 2.1 m GHO | 150 l/mm | 3 × 1800 | 2.5 | 2.3 | Medium |
2020-07-11 | 6 m BTA | 1200@540 | 4 × 300 | 1.0 | 2.0 | Medium |
2020-09-10 | 6 m BTA | 1200@540 | 6 × 300 | 1.0 | 1.7 | Medium |
2020-11-07 | 6 m BTA | 1200@540 | 8 × 300 | 1.0 | 4.0 | Medium |
2020-11-08 | 6 m BTA | 1200@540 | 8 × 300 | 2.0 | 1.3 | Excellent |
2020-11-23 | 6 m BTA | 550G | 5 × 240 | 1.2 | 3.4 | Medium |
2020-12-06 | 6 m BTA | 1200@540 | 7 × 300 | 2.0 | 1.4 | Medium |
2021-01-16 | 6 m BTA | 1200@540 | 5 × 240 | 2.0 | 4.0 | Bad |
2021-02-11 | 2.1 m GHO | 150 l/mm | 3 × 1800 | 2.5 | 2.4 | Medium |
2021-02-12 | 2.1 m GHO | 150 l/mm | 3 × 1800 | 2.5 | 2.9 | Medium |
2021-03-03 | 6 m BTA | 1200@540 | 3 × 180 | 2.0 | 2.5 | Medium |
2021-03-08 | 6 m BTA | 550 G | 6 × 240 | 1.2 | 4.5 | Good |
2021-03-12 | 2.1 m GHO | 150 l/mm | 3 × 1800 | 2.5 | 2.2 | Medium |
2021-03-15 | 2.1 m GHO | 150 l/mm | 3 × 1800 | 2.5 | 2.0 | Medium |
2021-04-11 | 2.1 m GHO | 150 l/mm | 3 × 1800 | 2.5 | 2.4 | Medium |
2021-05-11 | 2.1 m GHO | 150 l/mm | 3 × 1800 | 2.5 | 2.6 | Good |
2021-08-03 | 1 m Zeiss | 600@500 | 5 × 600 | 2.0 | 2.0 | Bad |
2021-10-06 | 1 m Zeiss | 600@500 | 5 × 600 | 2.0 | 2.5 | Medium |
2021-11-03 | 1 m Zeiss | 600@500 | 12 × 300 | 2.0 | 3.0 | Good |
2021-12-29 | 1 m Zeiss | 600@500 | 16 × 300 | 2.0 | 1.7 | Bad |
2022-01-03 | 1.8 m Cop | GR04 | 2 × 600 | 2.5 | 2.0 | Good |
2022-03-26 | 1.8 m Cop | GR07 | 3 × 540 | 1.69 | 2.0 | Medium |
2022-03-27 | 1.8 m Cop | GR07 | 3 × 540 | 1.69 | 2.0 | Medium |
2023-02-18 | 1.8 m Cop | GR07 | 2 × 540 | 1.69 | 3.0 | Medium |
2023-02-19 | 1.8 m Cop | GR07 | 3 × 540 | 1.69 | 2.5 | Medium |
2023-03-18 | 1.8 m Cop | VPH7 | 3 × 540 | 2.5 | 2.0 | Medium |
2023-04-16 | 1.8 m Cop | VPH7 | 3 × 540 | 2.5 | 3.3 | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilić, D.; Popović, L.Č.; Burenkov, A.; Shablovinskaya, E.; Malygin, E.; Uklein, R.; Moiseev, A.V.; Oparin, D.; Patiño Álvarez, V.M.; Chavushyan, V.; et al. Long-Term Optical Monitoring of Broad-Line AGNs (LoTerm AGN): Case Study of NGC 3516. Physics 2024, 6, 31-45. https://doi.org/10.3390/physics6010003
Ilić D, Popović LČ, Burenkov A, Shablovinskaya E, Malygin E, Uklein R, Moiseev AV, Oparin D, Patiño Álvarez VM, Chavushyan V, et al. Long-Term Optical Monitoring of Broad-Line AGNs (LoTerm AGN): Case Study of NGC 3516. Physics. 2024; 6(1):31-45. https://doi.org/10.3390/physics6010003
Chicago/Turabian StyleIlić, Dragana, Luka Č. Popović, Alexander Burenkov, Elena Shablovinskaya, Eugene Malygin, Roman Uklein, Alexei V. Moiseev, Dmitry Oparin, Víctor M. Patiño Álvarez, Vahram Chavushyan, and et al. 2024. "Long-Term Optical Monitoring of Broad-Line AGNs (LoTerm AGN): Case Study of NGC 3516" Physics 6, no. 1: 31-45. https://doi.org/10.3390/physics6010003
APA StyleIlić, D., Popović, L. Č., Burenkov, A., Shablovinskaya, E., Malygin, E., Uklein, R., Moiseev, A. V., Oparin, D., Patiño Álvarez, V. M., Chavushyan, V., Marziani, P., D’Onofrio, M., Floris, A., Kovačević, A. B., Jovičić, J., Miković, D., Rakić, N., Simić, S., Marčeta Mandić, S., ... del Olmo, A. (2024). Long-Term Optical Monitoring of Broad-Line AGNs (LoTerm AGN): Case Study of NGC 3516. Physics, 6(1), 31-45. https://doi.org/10.3390/physics6010003