A Theory of Best Choice Selection through Objective Arguments Grounded in Linear Response Theory Concepts
Abstract
:1. Introduction
2. Modern Ideas and Methods
2.1. Maximum Likelihood Rule
2.2. Technique for Order Preference by Similarity to Ideal Solution
2.3. Score Rather Than Rank Aggregation
2.4. On the Sequence of Criteria: A Geometrical Perspective
3. The Problem and Its Solution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Linear Response Theory
Appendix B. Two Examples
Appendix B.1. Example 1: Researcher Promotion
- -
- the IF mean of the best five papers: ;
- -
- the IF mean of the worst five papers: ;
- -
- the IF mean on the oldest five papers: ;
- -
- the IF mean on the five most recent papers: .
Candidate | Rank | Rank | Rank | Rank | ||||
---|---|---|---|---|---|---|---|---|
A | 7.80 | 1 | 3.20 | 2 | 7.80 | 1 | 3.20 | 4 |
B | 7.00 | 4 | 2.20 | 3 | 2.20 | 4 | 7.00 | 2 |
C | 7.60 | 2 | 3.60 | 1 | 7.60 | 2 | 3.60 | 3 |
D | 6.40 | 5 | 1.00 | 5 | 5.60 | 3 | 1.80 | 5 |
E | 7.60 | 2 | 2.20 | 3 | 2.20 | 4 | 7.60 | 1 |
- (i)
- It can immediately be seen that candidate A has the highest (=7.8) and (=7.8); author E has the maximum score on the last five () (=7.60), but author B does not reach any highest score, among these competitors or under any criterion. Let us also remark that, in this toy example, due to the nature of the evaluation, candidate D lays at the bottom on each ranking, no matter the specific criteria that are used. A complication arises in the need to rank the four others, since each of them is a winner for at least one committee member (or criterion): A and C even gain twice, but on different criteria certainly; B and E are twice ex aequos, but not near the top places. Thus, we have shown that different criteria lead to different rankings, but more so that the toy model implies that there is no obvious final choice as was, indeed, codified by Arrow’s theorem. Moreover, there is no indubitable hierarchy along this simple aggregation process.
- (ii)
- Next, consider the MLR method (Section 2.1) based on rankings, not on the scores, as given in Table A1. Recall that a MLR ordering is defined as one that minimises the total number of discrepancies among all the criteria in a pairwise preference scheme. The MLR ordering does not use any information about how much higher a candidate is ranked over another, but only a relative ordering. Practically, the method counts the pairwise preferences. The second step of the method consists in counting the number of times in which one candidate is ranked over another (from Table A1). In so doing, the MLR emphasises that the first-ranked choice wins against all other options in individual pairwise comparisons. Similarly, the MLR second-ranked choice would win against all other options (except the first-ranked), and so on. The present case outcome is reported in Table A2.
Candidate | A | B | C | D | E |
---|---|---|---|---|---|
A | − | 3 | 2 | 4 | 3 |
B | 1 | − | 1 | 3 | ((0)) |
C | 2 | 3 | − | 4 | (2) |
D | 0 | 1 | 0 | − | 1 |
E | 1 | ((2)) | (1) | 3 | − |
- (iii)
- Finally, let us consider the newly proposed method. It boils down to calculating the surfaces of rectangular triangles and their subsequent averaging, i.e., here, for three types of polygons with four sides. Using Equation (2), one obtains the results displayed in Table A3. It looks that this ranking is justified. Thereafter, one may conclude that the proposed method is more justified and advantageous than classical ones.
Candidate | ) | Total | Average | Rank | ||
---|---|---|---|---|---|---|
A | 12 | 15 | 15 | 42 | 14 | 1 |
B | 40 | 42 | 42 | 124 | 41.33 | 4 |
C | 16 | 15 | 15 | 46 | 15.33 | 2 |
D | 80 | 80 | 80 | 240 | 80 | 5 |
E | 24 | 25 | 21 | 70 | 23.33 | 3 |
Appendix B.2. Example 2: Football (Soccer) Players
Measure | Skill | SHO | PAS | DRI | DEF | PHY | PAC |
---|---|---|---|---|---|---|---|
77 | SHO | - | 6237 | 6545 | 2695 | 4774 | 6083 |
81 | PAS | 6237 | - | 6885 | 2835 | 5022 | 6399 |
85 | DRI | 6545 | 6885 | - | 2975 | 5270 | 6715 |
35 | DEF | 2695 | 2835 | 2975 | - | 2170 | 2765 |
62 | PHY | 4774 | 5022 | 5270 | 2170 | - | 4898 |
79 | PAC | 6083 | 6399 | 6715 | 2765 | 4898 | - |
Source | Size | Min | Max | Total Area | Mean | Std Dev | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
[78] | 6 | 2170 | 6885 | 29,248 | 4874.7 | 1912.2 | −0.4457 | −1.4123 |
LRT | 60 | 28,298 | 29,600 | 1,734,432 | 28,907 | 437.04 | 0.3076 | −1.5345 |
References
- Stauffer, D. Grand unification of exotic statistical physics. Phys. A Stat. Mech. Appl. 2000, 285, 121–126. [Google Scholar] [CrossRef]
- Stauffer, D. Introduction to statistical physics outside physics. Phys. A Stat. Mech. Appl. 2004, 336, 1–5. [Google Scholar] [CrossRef]
- Săvoiu, G.; Simăn, I.I. Sociophysics: A new science or a new domain for physicists in a modern university. In Econophysics. Background and Applications in Economics, Finance, and Sociophysics; Săvoiu, G., Ed.; Academic Press/Elsevier Inc.: Oxford, UK, 2013; Chapter 10. [Google Scholar] [CrossRef]
- Kutner, R.; Ausloos, M.; Grech, D.; Di Matteo, T.; Schinckus, C.; Stanley, H.E. Econophysics and sociophysics: Their milestones & challenges. Phys. A Stat. Mech. Appl. 2019, 516, 240–253. [Google Scholar] [CrossRef]
- Grech, D.; Miśkiewicz, J. (Eds.) Simplicity of Complexity in Economic and Social Systems; Springer Nature Switzerland AG: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Galam, S.; Gefen (Feigenblat), Y.; Shapir, Y. Sociophysics: A new approach of sociological collective behaviour. I. Mean-behaviour description of a strike. J. Math. Sociol. 1982, 9, 1–13. [Google Scholar] [CrossRef]
- Galam, S. Sociophysics: A review of Galam models. Int. J. Mod. Phys. C 2008, 19, 409–440. [Google Scholar] [CrossRef]
- Galam, S. Rational group decision making. A random field Ising model at T=0. Phys. A Stat. Mech. Appl. 1997, 238, 66–80. [Google Scholar] [CrossRef]
- Galam, S. Contrarian deterministic effects on opinion dynamics: “The hung elections scenario”. Phys. A Stat. Mech. Appl. 2004, 333, 453–460. [Google Scholar] [CrossRef]
- Galam, S. Modeling the forming of public opinion: An approach from sociophysics. Glob. Econ. Manag. Rev. 2013, 18, 2–11. [Google Scholar] [CrossRef]
- Galam, S. Is it necessary to lie to win a controversial public debate? An answer from sociophysics. In Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale; Matrasulov, D., Stanley, H.E., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands, 2014; pp. 37–45. [Google Scholar] [CrossRef]
- Galam, S. The invisible hand and the rational agent are behind bubbles and crashes. Chaos Solitons Fractals 2016, 88, 209–217. [Google Scholar] [CrossRef]
- Galam, S.; Cheon, T. Tipping points in opinion dynamics: A universal formula in five dimensions. Front. Phys. 2020, 8, 566580. [Google Scholar] [CrossRef]
- Galam, S. Opinion dynamics and unifying principles: A global unifying frame. Entropy 2022, 24, 1201. [Google Scholar] [CrossRef] [PubMed]
- Biondi, Y.; Giannoccolo, P.; Galam, S. Formation of share market prices under heterogeneous beliefs and common knowledge. Phys. A Stat. Mech. Appl. 2012, 391, 5532–5545. [Google Scholar] [CrossRef]
- Dhesi, G.; Ausloos, M. Modelling and measuring the irrational behaviour of agents in financial markets: Discovering the psychological soliton. Chaos Solitons Fractals 2016, 88, 119–125. [Google Scholar] [CrossRef]
- Lehmann, D.R. Television show preference: Application of a choice model. J. Mark. Res. 1971, 8, 47–55. [Google Scholar] [CrossRef]
- Lambiotte, R.; Ausloos, M. On the genre-fication of music: A percolation approach. Eur. Phys. J. B Condens. Mat. Compl. Syst. 2006, 50, 183–188. [Google Scholar] [CrossRef]
- Camagni, R.; Capello, R.; Caragliu, A. The rise of second-rank cities: What role for agglomeration economies? Eur. Plan. Stud. 2015, 23, 1069–1089. [Google Scholar] [CrossRef]
- Novac, A.; Dumitrescu-Moroianu, N. Dynamic model of regional convergence. Rom. Stat. Rev. Suppl. 2020, 6, 49–60. Available online: https://www.revistadestatistica.ro/supliment/2020/06/model-dinamic-de-convergenta-regionala/ (accessed on 12 February 2024).
- Rotundo, G.; Navarra, M. On the maximum drawdown during speculative bubbles. Phys. Stat. Mech. Appl. 2007, 382, 235–246. [Google Scholar] [CrossRef]
- Golubic, R.; Rudes, M.; Kovacic, N.; Marusic, M.; Marusic, A. Calculating impact factor: How bibliographical classification of journal items affects the impact factor of large and small journals. Sci. Engin. Ethics 2008, 14, 41–49. [Google Scholar] [CrossRef]
- Cerqueti, R.; Iovanella, A.; Mattera, R. Clustering networked funded european research activities through rank-size laws. Ann. Oper. Res. 2023. in print. [Google Scholar] [CrossRef]
- Liu, N.C.; Cheng, Y. The academic ranking of world universities. High. Educ. Eur. 2005, 30, 127–136. [Google Scholar] [CrossRef]
- Florian, R.V. Irreproducibility of the results of the Shanghai academic ranking of world universities. Scientometr. 2007, 72, 25–32. [Google Scholar] [CrossRef]
- López, A.M. Number of Points Obtained by Leading Samba Schools at Carnival Parades in Rio de Janeiro, Brazil between 1985 and 2022. Statista, 16 February 2024. Available online: https://www.statista.com/statistics/1241979/ranking-samba-schools-carnival-rio-de-janeiro-brazil/ (accessed on 12 February 2024).
- Taylor, J.M. The politics of aesthetic debate: The case of Brazilian carnival. Ethnology 1982, 21, 301–311. [Google Scholar] [CrossRef]
- Mitchell, J.H.; Haskell, W.L.; Raven, P.B. Classification of sports. J. Am. Coll. Cardiol. 1994, 24, 864–866. [Google Scholar] [CrossRef] [PubMed]
- Ausloos, M.; Gadomski, A.; Vitanov, N.K. Primacy and ranking of UEFA soccer teams from biasing organization rules. Phys. Scr. 2014, 89, 108002. [Google Scholar] [CrossRef]
- Malcata, R.M.; Vandenbogaerde, T.J.; Hopkins, W.G. Using athletes’ world rankings to assess countries’ performance. Int. J. Sport. Physiol. Perform. 2014, 9, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Ficcadenti, V.; Cerqueti, R.; Varde’i, C.H. A rank-size approach to analyse soccer competitions and teams: The case of the Italian football league “Serie A”. Ann. Oper. Res. 2023, 325, 85–113. [Google Scholar] [CrossRef]
- Ausloos, M. Hierarchy selection: New team ranking indicators for cyclist multi-stage races. Eur. J. Oper. Res. 2023, 314, 807–816. [Google Scholar] [CrossRef]
- Ausloos, M. Shannon entropy and Herfindahl-Hirschman Index as team’s performance and competitive balance indicators in cyclist multi-stage races. Entropy 2023, 25, 955. [Google Scholar] [CrossRef]
- Marquis de Condorcet, J.-A.-N.de C. Essai sur l’Application de l’Analyse la Probabilité des Décisions Rendues à la Pluralité des Voix; L’Imprimerie Royale: Paris, France, 1785; Available online: https://gallica.bnf.fr/ark:/12148/bpt6k417181 (accessed on 12 February 2024).
- Young, H.P.; Levenglick, A.A. A consistent extension of Condorcet’s election principle. SIAM J. Appl. Math. 1978, 35, 285–300. [Google Scholar] [CrossRef]
- Young, H.P. Condorcet’s theory of voting. Am. Polit. Sci. Rev. 1988, 82, 1231–1244. [Google Scholar] [CrossRef]
- Arrow, K.J. A difficulty in the concept of social welfare. J. Polit. Econ. 1950, 58, 328–346. [Google Scholar] [CrossRef]
- He, Y.; Deng, Y. Ordinal belief entropy. Soft Comput. 2023, 27, 6973–6981. [Google Scholar] [CrossRef]
- Krawczyk, M.J.; Wołoszyn, M.; Gronek, P.; Kułakowski, K.; Mucha, J. The Heider balance and the looking-glass self: Modelling dynamics of social relations. Sci. Rep. 2019, 9, 11202. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, M.J.; Kułakowski, K. Structural balance of opinions. Entropy 2021, 23, 1418. [Google Scholar] [CrossRef] [PubMed]
- Columbu, G.L.; De Martino, A.; Giansanti, A. Nature and statistics of majority rankings in a dynamical model of preference aggregation. Phys. A Stat. Mech. Appl. 2008, 387, 1338–1344. [Google Scholar] [CrossRef]
- Munda, G. Choosing aggregation rules for composite indicators. Soc. Indic. Res. 2012, 109, 337–354. [Google Scholar] [CrossRef]
- Nehama, I. Approximately classic judgement aggregation. Ann. Math. Artif. Intell. 2013, 68, 91–134. [Google Scholar] [CrossRef]
- Pumain, D. Hierarchy in Natural and Social Sciences; Springer Science+Business Media B.V.: Dordrecht, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Marfels, C. Absolute and relative measures of concentration reconsidered. Kyklos 1971, 24, 753–766. [Google Scholar] [CrossRef]
- Bikker, J.A.; Haaf, K. Competition, concentration and their relationship: An empirical analysis of the banking industry. J. Bank. Financ. 2002, 26, 2191–2214. [Google Scholar] [CrossRef]
- Cowell, F. Measuring Inequality; Oxford University Press: Oxford, UK, 2011. [Google Scholar] [CrossRef]
- Young, H.P. Optimal voting rules. J. Econ. Perspect. 1995, 9, 51–64. [Google Scholar] [CrossRef]
- García, J.A.; Rodriguez-Sánchez, R.; Fdez-Valdivia, J.; de Moya-Anegón, F. A web application for aggregating conflicting reviewers’ preferences. Scientometr. 2014, 99, 523–539. [Google Scholar] [CrossRef]
- Torres, R. Limiting dictatorial rules. J. Math. Econ. 2005, 41, 913–935. [Google Scholar] [CrossRef]
- Le Cam, L. Maximum likelihood: An introduction. Int. Stat. Rev. 1990, 58, 153–171. [Google Scholar] [CrossRef]
- Kemeny, J.G. Mathematics without numbers. Daedalus 1959, 88, 577–591. Available online: https://www.jstor.org/stable/20026529 (accessed on 12 February 2024).
- Varela, L.M.; Rotundo, G. Complex network analysis and nonlinear dynamics. In Complex Networks and Dynamics. Social and Economic Interactions; Commendatore, P., Matilla-García, M., Varela, L.M., Cáovas, J.S., Eds.; Springer International Publishing AG: Cham, Switzerland, 2016; pp. 3–25. [Google Scholar] [CrossRef]
- Lambiotte, R.; Ausloos, M. Coexistence of opposite opinions in a network with communities. J. Stat. Mech. Theory Exp. 2007, 2007, P08026. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications. A State-of-the-Art Survey; Springer: Berlin/Hiedelberg, Germany, 1981. [Google Scholar] [CrossRef]
- Yoon, K. A reconciliation among discrete compromise situations. J. Oper. Res. Soc. 1987, 38, 277–286. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Lai, Y.-J.; Liu, T.-Y. A new approach for multiple objective decision making. Comput. Oper. Res. 1993, 20, 889–899. [Google Scholar] [CrossRef]
- Lai, Y.-J.; Liu, T.-Y.; Hwang, C.-L. TOPSIS for MODM. Eur. J. Oper. Res. 1994, 76, 486–500. [Google Scholar] [CrossRef]
- Parida, P.K.; Mishra, D.; Behera, B. A new approach for selection of candidate by TOPSIS technique. J. Ultra Sci. Phys. Sci. A 2017, 29, 541–546. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chatterjee, P.; Das, P.P. Multi-Criteria Decision-Making Methods in Manufacturing Environments; Apple Academic Press: New York, NY, USA, 2023; Chapter 6. [Google Scholar] [CrossRef]
- Chakraborty, S. TOPSIS and Modified TOPSIS: A comparative analysis. Decis. Analyt. J. 2022, 2, 100021. [Google Scholar] [CrossRef]
- Fagin, R. Generalized First-Order Spectra and Polynomial-Time Recognizable Sets. In Complexity of Computation; Karp, R.M., Ed.; American Mathematical Society: Providence, RI, USA, 1974; pp. 43–73. Available online: https://www.kenclarkson.org/RonFaginPaper/RonFagin.html (accessed on 12 February 2024).
- Kohler, R. A segmentation system based on thresholding. Comput. Graph. Image Process. 1981, 15, 319–338. [Google Scholar] [CrossRef]
- Morariu, N.; Iancu, E.; Vlad, S. A neural network model for time series forecasting. Rom. J. Econ. Forecast. 2009, 4, 213–223. Available online: https://ideas.repec.org/a/rjr/romjef/vy2009i4p213-223.html (accessed on 12 February 2024).
- Ho, T.K.; Hull, J.J.; Srihari, S.N. Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 66–75. [Google Scholar] [CrossRef]
- Alwin, D.F.; Krosnick, J.A. The measurement of values in surveys: A comparison of ratings and rankings. Public Opin. Quart. 1985, 49, 535–552. [Google Scholar] [CrossRef]
- Sanchez, M.E. Effects of questionnaire design on the quality of survey data. Public Opin. Quart. 1992, 56, 206–217. [Google Scholar] [CrossRef]
- Green, M.S. Markoff random processes and the statistical mechanics of time-dependent phenomena. J. Chem. Phys. 1952, 20, 1281–1295. [Google Scholar] [CrossRef]
- Green, M.S. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 1954, 22, 398–413. [Google Scholar] [CrossRef]
- Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 1966, 29, 255–284. [Google Scholar] [CrossRef]
- Andrieux, D.; Gaspard, P. Fluctuation theorem and Onsager reciprocity relations. J. Chem. Phys. 2004, 121, 6167–6174. [Google Scholar] [CrossRef]
- Mori, H. Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 1965, 33, 423–455. [Google Scholar] [CrossRef]
- Ausloos, M. Relation between the Mori-Green-Kubo formulae and their Boltzmann approximation for electronic transport coefficients. J. Phys. A Math. Gen. 1978, 11, 1621–1632. [Google Scholar] [CrossRef]
- Players. Available online: https://sofifa.com/players (accessed on 12 February 2024).
- Teams. Available online: https://sofifa.com/teams (accessed on 12 February 2024).
- LALIGA. Robert Lewandowski. Available online: https://www.laliga.com/en-GB/player/robert-lewandowski (accessed on 12 February 2024).
- LALIGA. Player Comparison. Available online: https://www.laliga.com/en-GB/comparator/players?player1=witsel (accessed on 12 February 2024).
- Hazard, E. Available online: https://sofifa.com/player/183277/eden-hazard/230036/ (accessed on 12 February 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ausloos, M.; Rotundo, G.; Cerqueti, R. A Theory of Best Choice Selection through Objective Arguments Grounded in Linear Response Theory Concepts. Physics 2024, 6, 468-482. https://doi.org/10.3390/physics6020031
Ausloos M, Rotundo G, Cerqueti R. A Theory of Best Choice Selection through Objective Arguments Grounded in Linear Response Theory Concepts. Physics. 2024; 6(2):468-482. https://doi.org/10.3390/physics6020031
Chicago/Turabian StyleAusloos, Marcel, Giulia Rotundo, and Roy Cerqueti. 2024. "A Theory of Best Choice Selection through Objective Arguments Grounded in Linear Response Theory Concepts" Physics 6, no. 2: 468-482. https://doi.org/10.3390/physics6020031
APA StyleAusloos, M., Rotundo, G., & Cerqueti, R. (2024). A Theory of Best Choice Selection through Objective Arguments Grounded in Linear Response Theory Concepts. Physics, 6(2), 468-482. https://doi.org/10.3390/physics6020031