Advances and Prospects in Casimir Physics
Abstract
:1. Introduction
2. The Topics Highlighted in This Special Issue
3. Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wetensch. B 1948, 51, 793–795. Available online: https://dwc.knaw.nl/DL/publications/PU00018547.pdf (accessed on 11 August 2024).
- Fierz, M. Zur Anziehung leitender Ebenen im Vakuum. Helv. Phys. Acta 1960, 33, 855–858. [Google Scholar] [CrossRef]
- Mehra, J. Temperature correction to Casimir effect. Physica 1967, 37, 145–152. [Google Scholar] [CrossRef]
- Brown, L.S.; Maclay, G.J. Vacuum stress between conducting plates—An image solution. Phys. Rev. 1969, 184, 1272–1279. [Google Scholar] [CrossRef]
- Lifshitz, E.M. The theory of molecular attractive forces between solids. Zh. Eksp. Teor. Fiz. 1955, 29, 94–110. (In Russian); Sov. Phys. JETP 1956, 2, 73–83. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/2/1/p73?a=list (accessed on 11 August 2024).
- Dzyaloshinskii, I.E.; Lifshitz, E.M.; Pitaevskii, L.P. The general theory of van der Waals’ forces. Usp. Fiz. Nauk 1961, 73, 381–422. (In Russian); Sov. Phys. Uspekhi 1961, 4, 153–176 [Google Scholar] [CrossRef]
- Lifshitz, E.M.; Pitaevskii, L.P. Statistical Physics, Part 2; Pergamon: Oxford, UK, 1980; Available online: https://haidinh89.files.wordpress.com/2015/08/landau-l-d-lifshitz-e-m-course-of-theoretical-physics-vol-09-statistical-physics-part-2-3455.pdf (accessed on 11 August 2024).
- Parsegian, V.A. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Casimir, H.B.G.; Polder, D. The influence of retardation on the London–van der Waals forces. Phys. Rev. 1948, 73, 360–372. [Google Scholar] [CrossRef]
- Hargreaves, C.M. Corrections to retarded dispersion force between metal bodies. Proc. Kon. Ned. Akad. Wetensch. B 1965, 68, 231–236. [Google Scholar]
- Boyer, T.H. Quantum electromagnetic zero-point energy of a conducting spherical shell and Casimir model for a charged particle. Phys. Rev. 1968, 174, 1764–1776. [Google Scholar] [CrossRef]
- Richmond, P.; Ninham, B.W. A note on the extension of the Lifshitz theory of van der Waals forces to magnetic media. J. Phys. C 1971, 4, 1988–1993. [Google Scholar] [CrossRef]
- Boyer, T.H. Van der Waals forces and zero-point energy for dielectric and permeable materials. Phys. Rev. A 1974, 9, 2078–2084. [Google Scholar] [CrossRef]
- Boström, M.; Sernelius, B.E. Comment on “Calculation of the Casimir force between imperfectly conducting plates”. Phys. Rev. A 2000, 61, 046101. [Google Scholar] [CrossRef]
- Boström, M.; Sernelius, B.E. Thermal effects on the Casimir force in the 0.1–5 μm range. Phys. Rev. Lett. 2000, 84, 4757–4760. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, A.; Reynaud, S. Casimir force between metallic mirrors. Eur. Phys. J. D 2000, 8, 309–318. [Google Scholar] [CrossRef]
- Genet, C.; Lambrecht, A.; Maia Neto, P.; Reynaud, S. The Casimir force between rough metallic plates. EPL (Europhys. Lett.) 2003, 62, 484–490. [Google Scholar] [CrossRef]
- Boström, M.; Sernelius, B.E. Entropy of the Casimir effect between real metal plates. Phys. A 2004, 339, 53–59. [Google Scholar] [CrossRef]
- Torgerson, J.R.; Lamoreaux, S.K. Low-frequency character of the Casimir force between metallic films. Phys. Rev. E 2004, 70, 047102. [Google Scholar] [CrossRef] [PubMed]
- Bimonte, G.; Calloni, E.; Esposito, G.; Milano, L.; Rosa, L. Towards measuring variations of Casimir energy by a superconducting cavity. Phys. Rev. Lett. 2005, 94, 180402. [Google Scholar] [CrossRef]
- Bimonte, G.; Calloni, E.; Esposito, G.; Rosa, L. Variations of Casimir energy from a superconducting transition. Nucl. Phys. B 2005, 726, 441–463. [Google Scholar] [CrossRef]
- Bimonte, G. Comment on “Low-frequency character of the Casimir force between metallic films”. Phys. Rev. E 2006, 73, 048101. [Google Scholar] [CrossRef]
- Bimonte, G. A theory of electromagnetic fluctuations for metallic surfaces and van der Waals interactions between metallic bodies. Phys. Rev. Lett. 2006, 96, 160401. [Google Scholar] [CrossRef]
- Bimonte, G. Bohr-van Leeuwen theorem and the thermal Casimir effect for conductors. Phys. Rev. A 2009, 79, 042107. [Google Scholar] [CrossRef]
- Levin, M.; McCauley, A.P.; Rodrigues, A.W.; Reid, M.T.H.; Johnson, S.G. Casimir repulsion between metallic objects in vacuum. Phys. Rev. Lett. 2010, 105, 090403. [Google Scholar] [CrossRef] [PubMed]
- Bimonte, G. Making precise predictions of the Casimir force between metallic plates via a weighted Kramers-Kronig transform. Phys. Rev. A 2011, 83, 042109. [Google Scholar] [CrossRef]
- Schwinger, J.; DeRaad, L.L.; Milton, K.A. Casimir effect in dielectrics. Ann. Phys. 1978, 115, 1–23. [Google Scholar] [CrossRef]
- Inui, N. Temperature dependence of the Casimir force between silicon slabs. J. Phys. Soc. Jpn. 2003, 72, 2198–2202. [Google Scholar] [CrossRef]
- Canaguier-Durand, A.; Gérardin, A.; Guérout, R.; Maia Neto, P.A.; Nesvizhevsky, V.V.; Voronin, A.Y.; Lambrecht, A.; Reynaud, S. Casimir interaction between a dielectric nanosphere and a metallic plane. Phys. Rev. A 2011, 83, 032508. [Google Scholar] [CrossRef]
- Rosa, F.S.S.; Dalvit, D.A.R.; Milonni, P.W. Electrodynamic energy, absorption, and Casimir forces. II. Inhomogeneous dielectric media. Phys. Rev. A 2011, 84, 053813. [Google Scholar] [CrossRef]
- Inui, N. Temperature dependence of the Casimir force between a superconductor and a magnetodielectric. Phys. Rev. A 2012, 86, 022520. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys. 2009, 81, 1827–1885. [Google Scholar] [CrossRef]
- Woods, L.M.; Dalvit, D.A.R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A.W.; Podgornik, R. Materials perspective on Casimir and van der Waals interactions. Rev. Mod. Phys. 2016, 88, 045003. [Google Scholar] [CrossRef]
- Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Sernelius, B.E. Fundamentals of van der Waals and Casimir Interactions; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Zhou, F.; Spruch, L. Van-der-Waals and retardation (Casimir) interactions of an electron or an atom with multilayered walls. Phys. Rev. A 1995, 52, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Caride, A.O.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Zanette, S.I. Dependences of the van der Waals atom-wall interaction on atomic and material properties. Phys. Rev. A 2005, 71, 042901. [Google Scholar] [CrossRef]
- Babb, J.F. Long-range atom–surface interactions for cold atoms. J. Phys. Conf. Ser. 2005, 19, 1. [Google Scholar] [CrossRef]
- Safari, H.; Welsch, D.-G.; Buhmann, S.Y.; Scheel, S. van der Waals potentials of paramagnetic atoms. Phys. Rev. A 2008, 78, 062901. [Google Scholar] [CrossRef]
- Haakh, H.; Intravaia, F.; Henkel, C.; Spagnolo, S.; Passante, R.; Power, B.; Sols, F. Temperature dependence of the magnetic Casimir–Polder interaction. Phys. Rev. A 2009, 80, 062905. [Google Scholar] [CrossRef]
- Ellingsen, S.; Buhmann, S.Y.; Scheel, S. Temperature-independent Casimir–Polder forces despite large thermal photon numbers. Phys. Rev. Lett. 2010, 104, 223003. [Google Scholar] [CrossRef]
- Passante, R.; Rizzuto, L.; Spagnolo, S.; Tanaka, S.; Petrosky, T.Y. Harmonic oscillator model for the atom-surface Casimir–Polder interaction energy. Phys. Rev. A 2012, 85, 062109. [Google Scholar] [CrossRef]
- Sun, W. Interaction forces between a spherical nanoparticle and a flat surface. Phys. Chem. Chem. Phys. 2014, 16, 5846–5854. [Google Scholar] [CrossRef]
- Khusnutdinov, N.; Kashapov, R.; Woods, L.M. Casimir–Polder effect for a stack of conductive planes. Phys. Rev. A 2016, 94, 012513. [Google Scholar] [CrossRef]
- Fuchs, S.; Crosse, J.A.; Buhmann, S.Y. Casimir–Polder shift and decay rate in the presence of nonreciprocal media. Phys. Rev. A 2017, 95, 023805. [Google Scholar] [CrossRef]
- Milton, K.A.; Li, Y.; Kalauni, P.; Parashar, P.; Guérout, P.; Ingold, G.-L.; Lambrecht, A.; Reynaud, S. Negative entropies in Casimir and Casimir–Polder interactions. Fortschr. Phys./Prog. Phys. 2017, 65, 1600047. [Google Scholar] [CrossRef]
- Fuchs, S.; Bennett, R.; Krems, R.V.; Buhmann, S.Y. Nonadditivity of optical and Casimir–Polder potentials. Phys. Rev. Lett. 2018, 121, 083603. [Google Scholar] [CrossRef] [PubMed]
- Berkhout, J.J.; Luiten, O.J.; Setija, I.D.; Hijmans, T.W.; Mizusaki, T.; Walraven, J.T.M. Quantum reflection: Focusing of hydrogen atoms with a concave mirror. Phys. Rev. Lett. 1989, 63, 1689–1693. [Google Scholar] [CrossRef]
- Yu, I.A.; Doyle, M.J.; Sandberg, J.C.; Cesar, C.L.; Kleppner, D.; Greytak, T.J. Evidence for universal quantum reflection of hydrogen from liquid 4He. Phys. Rev. Lett. 1993, 71, 1589–1593. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, F. Specular reflection of very slow metastable neon atoms from a solid surface. Phys. Rev. Lett. 2001, 86, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, H.; Jacoby, G.; Meister, C.J. Quantum reflection by Casimir-van der Waals potential tails. Phys. Rev. A 2002, 65, 032902. [Google Scholar] [CrossRef]
- Druzhinina, V.; DeKieviet, M. Experimental observation of quantum reflection far from threshold. Phys. Rev. Lett. 2003, 91, 193202. [Google Scholar] [CrossRef]
- Oberst, H.; Tashiro, Y.; Shimizu, K.; Shimizu, F. Quantum reflection of He* on silicon. Phys. Rev. A 2005, 71, 052901. [Google Scholar] [CrossRef]
- Madroñero, J.; Friedrich, H. Influence of realistic atom wall potentials in quantum reflection traps. Phys. Rev. A 2007, 75, 022902. [Google Scholar] [CrossRef]
- Bezerra, V.B.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Romero, C. Lifshitz theory of atom-wall interaction with applications to quantum reflection. Phys. Rev. A 2008, 78, 042901. [Google Scholar] [CrossRef]
- Harber, D.M.; McGuirk, J.M.; Obrecht, J.M.; Cornell, E.A. Thermally induced losses in ultra-cold atoms magnetically trapped near room-temperature surfaces. J. Low Temp. Phys. 2003, 133, 229–238. [Google Scholar] [CrossRef]
- Leanhardt, A.E.; Shin, Y.; Chikkatur, A.P.; Kielpinski, D.; Ketterle, W.; Pritchard, D.E. Bose–Einstein condensates near a microfabricated surface. Phys. Rev. Lett. 2003, 90, 100404. [Google Scholar] [CrossRef]
- Antezza, M.; Pitaevskii, L.P.; Stringari, S. Effect of the Casimir–Polder force on the collective oscillations of a trapped Bose–Einstein condensate. Phys. Rev. A 2004, 70, 053619. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Teper, I. Chin, C.; Vuletić, V. Impact of the Casimir–Polder potential and Johnson noise on Bose–Einstein condensate stability near surfaces. Phys. Rev. Lett. 2004, 92, 050404. [Google Scholar] [CrossRef] [PubMed]
- Harber, D.M.; Obrecht, J.M.; McGuirk, J.M.; Cornell, E.A. Measurement of the Casimir–Polder force through center-of-mass oscillations of a Bose–Einstein condensate. Phys. Rev. A 2005, 72, 033610. [Google Scholar] [CrossRef]
- Obrecht, J.M.; Wild, R.J.; Antezza, M.; Pitaevskii, L.P.; Stringari, S.; Cornell, E.A. Measurement of the temperature dependence of the Casimir–Polder force. Phys. Rev. Lett. 2007, 98, 063201. [Google Scholar] [CrossRef]
- Buhmann, S.Y. Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals Forces; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Buhmann, S.Y. Dispersion Forces II: Many-Body Effects, Excited Atoms, Finite Temperature and Quantum Friction; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Mohideen, U.; Roy, A. Precision measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett. 1998, 81, 4549–4552. [Google Scholar] [CrossRef]
- Chen, F.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Control of the Casimir force by the modification of dielectric properties with light. Phys. Rev. B 2007, 76, 035338. [Google Scholar] [CrossRef]
- de Man, S.; Heeck, K.; Wijngaarden, R.J.; Iannuzzi, D. Halving the Casimir force with Conductive Oxides. Phys. Rev. Lett. 2009, 103, 040402. [Google Scholar] [CrossRef]
- de Man, S.; Heeck, K.; Iannuzzi, D. Halving the Casimir force with conductive oxides: Experimental details. Phys. Rev. A 2010, 82, 062512. [Google Scholar] [CrossRef]
- Torricelli, G.; van Zwol, P.J.; Shpak, O.; Binns, C.; Palasantzas, G.; Kooi, B.J.; Svetovoy, V.B.; Wuttig, M. Switching Casimir force with phase-change materials. Phys. Rev. A 2010, 82, 010101. [Google Scholar] [CrossRef]
- Chang, C.-C.; Banishev, A.A.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Reduction of the Casimir force from indium tin oxide film by UV treatment. Phys. Rev. Lett. 2011, 107, 090403. [Google Scholar] [CrossRef] [PubMed]
- Banishev, A.A.; Chang, C.-C.; Castillo-Garza, R.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Modifying the Casimir force between indium tin oxide film and Au sphere. Phys. Rev. B 2012, 85, 045436. [Google Scholar] [CrossRef]
- Laurent, J.; Sellier, H.; Mosset, A.; Huant, S.; Chevrier, J. Casimir force measurements in Au-Au and Au-Si cavities at low temperature. Phys. Rev. B 2012, 85, 035426. [Google Scholar] [CrossRef]
- Banishev, A.A.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Demonstration of the Casimir force between ferromagnetic surfaces of a Ni-coated sphere and a Ni-coated plate. Phys. Rev. Lett. 2013, 110, 137401. [Google Scholar] [CrossRef]
- Sedighi, M.; Svetovoy, V.B.; Palasantzas, G. Casimir force measurements from silicon carbide surfaces. Phys. Rev. B 2016, 93, 085434. [Google Scholar] [CrossRef]
- Liu, M.; Xu, J.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Examining the Casimir puzzle with an upgraded AFM-based technique and advanced surface cleaning. Phys. Rev. B 2019, 100, 081406. [Google Scholar] [CrossRef]
- Liu, M.; Xu, J.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Precision measurements of the gradient of the Casimir force between ultraclean metallic surfaces at larger separations. Phys. Rev. A 2019, 100, 052511. [Google Scholar] [CrossRef]
- Svetovoy, V.B.; Postnikov, A.V.; Uvarov, I.V.; Stepanov, F.I.; Palasantzas, G. Measuring the dispersion forces near the van der Waals–Casimir transition. Phys. Rev. Appl. 2020, 13, 064057. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Demonstration of unusual thermal effect in the Casimir force from graphene. Phys. Rev. Lett. 2021, 126, 206802. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, Y.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Experimental and theoretical investigation of the thermal effect in the Casimir interaction from graphene. Phys. Rev. B 2021, 104, 085436. [Google Scholar] [CrossRef]
- Decca, R.S.; López, D.; Fischbach, E.; Krause, D.E. Measurement of the Casimir force between dissimilar metals. Phys. Rev. Lett. 2003, 91, 050402. [Google Scholar] [CrossRef]
- Decca, R.S.; López, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Ann. Phys. 2005, 318, 37–80. [Google Scholar] [CrossRef]
- Decca, R.S.; López, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D 2007, 75, 077101. [Google Scholar] [CrossRef]
- Decca, R.S.; López, D.; Osquiguil, E. New results for the Casimir interaction: Sample characterization and low temperature measurements. Int. J. Mod. Phys. A 2010, 25, 2223–2230. [Google Scholar] [CrossRef]
- Bao, Y.; Guérout, R.; Lussange, J.; Lambrecht, A.; Cirelli, R.A.; Klemens, F.; Mansfield, W.M.; Pai, C.S.; Chan, H.B. Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects. Phys. Rev. Lett. 2010, 105, 250402. [Google Scholar] [CrossRef]
- Intravaia, F.; Koev, S.; Jung, I.W.; Talin, A.A.; Davids, P.S.; Decca, R.S.; Aksyuk, V.A.; Dalvit, D.A.R.; López, D. Strong Casimir force reduction through metallic surface nanostructuring. Nat. Commun. 2013, 4, 2515. [Google Scholar] [CrossRef]
- Bimonte, G.; López, D.; Decca, R.S. Isoelectronic determination of the thermal Casimir force. Phys. Rev. B 2016, 93, 184434. [Google Scholar] [CrossRef]
- Buks, E.; Roukes, M.L. Stiction, adhesion, and the Casimir effect in micromechanical systems. Phys. Rev. B 2001, 63, 033402. [Google Scholar] [CrossRef]
- Buks, E.; Roukes, M.L. Metastability and the Casimir effect in micromechanical systems. EPL (Europhys. Lett). 2001, 54, 220–226. [Google Scholar] [CrossRef]
- Chan, H.B.; Aksyuk, V.A.; Kleiman, R.N.; Bishop, D.J.; Capasso, F. Quantum mechanical actuation of microelectromechanical system by the Casimir effect. Science 2001, 291, 1941–1944. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.B.; Aksyuk, V.A.; Kleiman, R.N.; Bishop, D.J.; Capasso, F. Nonlinear micromechanical Casimir oscillator. Phys. Rev. Lett. 2001, 87, 211801. [Google Scholar] [CrossRef]
- Barcenas, J.; Reyes, L.; Esquivel-Sirvent, R. Scaling of micro- and nanodevices actuated by the Casimir force. Appl. Phys. Lett. 2005, 87, 263106. [Google Scholar] [CrossRef]
- Palasantzas, G. Contact angle influence on the pull-in voltage of microswitches in the presence of capillary and quantum vacuum effects. J. Appl. Phys. 2007, 101, 053512. [Google Scholar] [CrossRef]
- Palasantzas, G. Pull-in voltage of microswitch rough plates in the presence of electromagnetic and acoustic Casimir forces. J. Appl. Phys. 2007, 101, 063548. [Google Scholar] [CrossRef]
- Esquivel-Sirvent, R.; Pérez-Pascual, R. Geometry and charge carrier induced stability in Casimir actuated nanodevices. Eur. Phys. J. B 2013, 86, 467. [Google Scholar] [CrossRef]
- Broer, W.; Palasantzas, G.; Knoester, G.; Svetovoy, V.B. Significance of the Casimir force and surface roughness for actuation dynamics of MEMS. Phys. Rev. B 2013, 87, 125413. [Google Scholar] [CrossRef]
- Sedighi, M.; Broer, W.; Palasantzas, G.; Kooi, B.J. Sensitivity of micromechanical actuation on amorphous to crystalline phase transformations under the influence of Casimir forces. Phys. Rev. B 2013, 88, 165423. [Google Scholar] [CrossRef]
- Zou, J.; Marcet, Z.; Rodriguez, A.W.; Reid, M.T.H.; McCauley, A.P.; Kravchenko, I.I.; Lu, T.; Bao, Y.; Johnson, S.G.; Chan, H.B. Casimir forces on a silicon micromechanical chip. Nat. Commun. 2013, 4, 1845. [Google Scholar] [CrossRef]
- Broer, W.; Waalkens, H.; Svetovoy, V.B.; Knoester, J.; Palasantzas, G. Nonlinear actuation dynamics of driven Casimir oscillators with rough surfaces. Phys. Rev. Appl. 2013, 4, 054016. [Google Scholar] [CrossRef]
- Liu, X.-F.; Li, Y.; Jing, H. Casimir switch: Steering optical transparancy with vacuum forces. Sci. Rep. 2016, 6, 27102. [Google Scholar] [CrossRef] [PubMed]
- Inui, N. Optical switching of a graphene mechanical switch using the Casimir effect. J. Appl. Phys. 2017, 122, 104501. [Google Scholar] [CrossRef]
- Milton, K.A. Fermionic Casimir stress on a spherical bag. Ann. Phys. 1983, 150, 432–438. [Google Scholar] [CrossRef]
- Baacke, J.; Igarashi, Y. Casimir energy of confined massive quarks. Phys. Rev. D 1983, 27, 460–463. [Google Scholar] [CrossRef]
- Bordag, M.; Elizalde, E.; Kirsten, K.; Leseduarte, S. Casimir energies for massive scalar fields in a spherical geometry. Phys. Rev. D 1997, 56, 4896–4904. [Google Scholar] [CrossRef]
- Elizalde, E.; Santos, F.C.; Tort, A.C. The Casimir energy of a massive fermionic field confined in a (d + 1)-dimensional slab-bag. Int. J. Mod. Phys. A 2003, 18, 1761–1772. [Google Scholar] [CrossRef]
- Cruz, M.B.; Bezerra de Mello, E.R.; Petrov, A.Y. Fermionic Casimir effect in a field theory model with Lorentz symmetry violation. Phys. Rev. D 2019, 99, 085012. [Google Scholar] [CrossRef]
- Mandlecha, Y.V.; Gavai, R.V. Lattice fermionic Casimir effect in a slab bag and universality. Phys. Lett. B 2022, 835, 137558. [Google Scholar] [CrossRef]
- Rohim, A.; Romadani, A.; Adam, A.S. Casimir effect of Lorentz-violating charged Dirac field in background magnetic field. Prog. Theor. Exp. Phys. 2024, 2024, 033B01. [Google Scholar] [CrossRef]
- Milton, K.A. The Casimir Effect: Physical Manifestations of Zero-Point Energy; World Scientific: Singapore, 2001. [Google Scholar]
- Ford, L.H. Quantum vacuum energy in a closed universe. Phys. Rev. D 1976, 14, 3304–3313. [Google Scholar] [CrossRef]
- Dowker, J.S.; Critchley, R. Covariant Casimir calculations. J. Phys. A Math. Gen. 1976, 9, 535–540. [Google Scholar] [CrossRef]
- Isham, C.J. Twisted quantum fields in a curved space-time. Proc. R. Soc. Lond. A Math. Phys. Sci. 1978, 362, 383–404. [Google Scholar]
- DeWitt, B.S.; Hart, C.F.; Isham, C.J. Topology and quantum field theory. Phys. A 1979, 96, 197–211. [Google Scholar] [CrossRef]
- Ford, L.H. Vacuum polarization in a non-simply connected spacetime. Phys. Rev. D 1980, 21, 933–948. [Google Scholar] [CrossRef]
- Helliwell, T.M.; Konkowski, D.A. Vacuum fluctuations outside cosmic strings. Phys. Rev. D 1986, 34, 1918–1920. [Google Scholar] [CrossRef]
- Candelas, P.; Weinberg, S. Calculation of gauge couplings and compact circumferences from self-consistent dimensional reduction. Nucl. Phys. B 1984, 237, 397–441. [Google Scholar] [CrossRef]
- Chodos, A.; Myers, E. Gravitational contribution to the Casimir energy in Kaluza-Klein theories. Ann. Phys. 1984, 156, 412–441. [Google Scholar] [CrossRef]
- Birmingham, D.; Kantowski, R.; Milton, K.A. Scalar and spinor Casimir energies in even-dimensional Kaluza–Klein spaces of the form M4 × SN1 × SN2 × ⋯. Phys. Rev. D 1988, 38, 1809–1822. [Google Scholar] [CrossRef]
- Emig, T.; Jaffe, R.L.; Kardar, M.; Scardicchio, A. Casimir interaction between a plate and a cylinder. Phys. Rev. Lett. 2006, 96, 080403. [Google Scholar] [CrossRef]
- Emig, T.; Graham, N.; Jaffe, R.L.; Kardar, M. Casimir forces between arbitrary compact objects. Phys. Rev. Lett. 2007, 99, 170403. [Google Scholar] [CrossRef] [PubMed]
- Kenneth, O.; Klich, I. Casimir forces in a T-operator approach. Phys. Rev. B 2008, 78, 014103. [Google Scholar] [CrossRef]
- Emig, T.; Graham, N.; Jaffe, R.L.; Kardar, M. Casimir forces between compact objects: The scalar case. Phys. Rev. D 2008, 77, 025005. [Google Scholar] [CrossRef]
- Rahi, S.J.; Emig, T.; Graham, N.; Jaffe, R.L.; Kardar, M. Scattering theory approach to electromagnetic Casimir forces. Phys. Rev. D 2009, 80, 085021. [Google Scholar] [CrossRef]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Proximity force approximation for the Casimir energy as a derivative expansion. Phys. Rev. D 2011, 84, 105031. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T.; Jaffe, R.L.; Kardar, M. Casimir forces beyond the proximity force approximation. EPL (Europhys. Lett.) 2012, 97, 50001. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T.; Kardar, M. Material dependence of Casimir force: Gradient expansion beyond proximity. Appl. Phys. Lett. 2012, 100, 074110. [Google Scholar] [CrossRef]
- Graham, N. Electromagnetic Casimir forces in elliptic cylinder geometries. Phys. Rev. D 2013, 87, 105004. [Google Scholar] [CrossRef]
- Spreng, B.; Hartmann, M.; Henning, V.; Maia Neto, P.A.; Ingold, G.-L. Proximity force approximation and specular reflection: Application of the WKB limit of Mie scattering to the Casimir effect. Phys. Rev. A 2018, 97, 062504. [Google Scholar] [CrossRef]
- Bulgac, A.; Magierski, P.; Wirzba, A. Scalar Casimir effect between Dirichlet spheres or a plate and a sphere. Phys. Rev. D 2006, 73, 025007. [Google Scholar] [CrossRef]
- Bordag, M. Casimir effect for a sphere and a cylinder in front of a plane and corrections to the proximity force theorem. Phys. Rev. D 2006, 73, 125018. [Google Scholar] [CrossRef]
- Maia Neto, P.A.; Lambrecht, A.; Reynaud, S. Casimir energy between a plane and a sphere in electromagnetic vacuum. Phys. Rev. A 2008, 78, 012115. [Google Scholar] [CrossRef]
- Canaguier-Durand, A.; Maia Neto, P.A.; Cavero-Pelaez, I.; Lambrecht, A.; Reynaud, S. Casimir interaction between plane and spherical metallic surfaces. Phys. Rev. Lett. 2009, 102, 230404. [Google Scholar] [CrossRef] [PubMed]
- Bordag, M.; Pirozhenko, I. Casimir entropy for a ball in front of a plane. Phys. Rev. D 2010, 82, 125016. [Google Scholar] [CrossRef]
- Teo, L.P. Material dependence of Casimir interaction between a sphere and a plate: First analytic correction beyond proximity force approximation. Phys. Rev. D 2013, 88, 045019. [Google Scholar] [CrossRef]
- Bimonte, G. Going beyond PFA: A precise formula for the sphere-plate Casimir force. EPL (Europhys. Lett.) 2017, 118, 20002. [Google Scholar] [CrossRef]
- Hartmann, M.; Ingold, G.-L.; Maia Neto, P.A. Plasma versus Drude modeling of the Casimir force: Beyond the proximity force approximation. Phys. Rev. Lett. 2017, 119, 043901. [Google Scholar] [CrossRef]
- Hartmann, M.; Ingold, G.-L.; Maia Neto, P.A. Advancing numerics for the Casimir effect to experimentally relevant asect ratios. Phys. Scr. 2018, 93, 114003. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T. Surface scattering expansion of the Casimir–Polder interaction for magneto-dielectric bodies: Convergence properties for insulators, conductors, and semiconductors. Physics 2024, 6, 194–205. [Google Scholar] [CrossRef]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Casimir Physics beyond the Proximity Force Approximation: The Derivative Expansion. Physics 2024, 6, 290–316. [Google Scholar] [CrossRef]
- Castillo-López, S.G.; Esquivel-Sirvent, R.; Pirruccio, G.; Villarreal, C. Casimir forces with periodic structures: Abrikosov flux lattices. Physics 2024, 6, 394–406. [Google Scholar] [CrossRef]
- Graham, N. Electromagnetic Casimir–Polder interaction for a conducting cone. Physics 2023, 5, 1003–1012. [Google Scholar] [CrossRef]
- Dhital, M.; Mohideen, U. A Brief review of some recent precision Casimir force measurements. Physics 2024, 6, 891–904. [Google Scholar] [CrossRef]
- Hult, E.; Hyldgaard, P.; Rossmeisl, J.; Lundqvist, B.I. Density-functional calculation of van der Waals forces for free-electron-like surfaces. Phys. Rev. B 2001, 64, 195414. [Google Scholar] [CrossRef]
- Drosdoff, D.; Woods, L.M. Casimir forces and graphene sheets. Phys. Rev. B 2010, 82, 155459. [Google Scholar] [CrossRef]
- Sernelius, B.E. Retarded interactions in graphene systems. Phys. Rev. B 2012, 85, 195427. [Google Scholar] [CrossRef]
- Zhu, T.; Antezza, M.; Wang, J.-S. Dynamical polarizability of graphene with spatial dispersion. Phys. Rev. B 2021, 103, 125421. [Google Scholar] [CrossRef]
- Bordag, M.; Fialkovsky, I.V.; Gitman, D.M.; Vassilevich, D.V. Casimir interaction between a perfect conductor and graphene described by the Dirac model. Phys. Rev. B 2009, 80, 245406. [Google Scholar] [CrossRef]
- Fialkovsky, I.V.; Marachevsky, V.N.; Vassilevich, D.V. Finite-temperature Casimir effect for graphene. Phys. Rev. B 2011, 84, 035446. [Google Scholar] [CrossRef]
- Bordag, M.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Petrov, V.M. Quantum field theoretical description for the reflectivity of graphene. Phys. Rev. D 2015, 91, 045037. [Google Scholar] [CrossRef]
- Bordag, M.; Fialkovskiy, I.; Vassilevich, D. Enhanced Casimir effect for doped graphene. Phys. Rev. B 2016, 93, 075414. [Google Scholar] [CrossRef]
- Tajik, F.; Palasantzas, G. Dynamical sensitivity of three-layer micro electromechanical systems to the optical properties of the intervening liquid layer. Physics 2023, 5, 1081–1093. [Google Scholar] [CrossRef]
- Haghmoradi, H.; Fischer, H.; Bertolini, A.; Galić, I.; Intravaia, F.; Pitschmann, M.; Schimpl, R.; Sedmik, R.I.P. Force metrology with plane parallel plates: Final design review and outlook. Physics 2024, 6, 690–741. [Google Scholar] [CrossRef]
- Khoury, J.; Weltman, A. Chameleon fields: Awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 2004, 93, 171104. [Google Scholar] [CrossRef] [PubMed]
- Olive, K.A.; Pospelov, M. Environmental dependence of masses and coupling constants. Phys. Rev. D 2008, 77, 043524. [Google Scholar] [CrossRef]
- Hinterbichler, K.; Khoury, J. Screening long-range forces through local symmetry restoration. Phys. Rev. Lett. 2010, 104, 231301. [Google Scholar] [CrossRef] [PubMed]
- Hinterbichler, K.; Khoury, J.; Levy, A.; Matas, A. Symmetron cosmology. Phys. Rev. D 2011, 84, 103521. [Google Scholar] [CrossRef]
- Brax, P.; Fischer, H.; Käding, C.; Pitschmann, M. The environment dependent dilaton in the laboratory and the solar system. Eur. Phys. J. C 2022, 82, 934. [Google Scholar] [CrossRef]
- Decca, R.S.; López, D.; Chan, H.B.; Fischbach, E.; Krause, D.E.; Jamell, C.R. Constraining new forces in the Casimir regime using the isoelectronic technique. Phys. Rev. Lett. 2005, 94, 240401. [Google Scholar] [CrossRef]
- Antoniadis, I.; Baessler, S.; Bücher, M.; Fedorov, V.V.; Hoedl, S.; Lambrecht, A.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Reynaud, S.; et al. Short-range fundamental forces. Comptes Rendus Phys. 2011, 12, 755–778. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Improved constraints on the coupling constants of axion-like particles to nucleons from recent Casimir-less experiment. Eur. Phys. J. C 2015, 75, 164. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Tham, W.K.; Krause, D.E.; López, D.; Fischbach, E.; Decca, R.S. Stronger limits on hypothetical Yukawa interactions in the 30–8000 nm range. Phys. Rev. Lett. 2016, 116, 221102. [Google Scholar] [CrossRef] [PubMed]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of Casimir forces. Phys. Rev. D 2017, 95, 123013. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L. Recent breakthrough and outlook in constraining the non-Newtonian gravity and axion-like particles from Casimir physics. Eur. Phys. J. C 2017, 77, 315. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Kuusk, P.; Mostepanenko, V.M. Constraints on non-Newtonian gravity and axionlike particles from measuring the Casimir force in nanometer separation range. Phys. Rev. D 2020, 101, 056013. [Google Scholar] [CrossRef]
- Svetovoy, V.B. Casimir forces between a dielectric and metal: Compensation of the electrostatic interaction. Physics 2023, 5, 814–822. [Google Scholar] [CrossRef]
- Speake, C.C.; Trenkel, C. Forces between conducting surfaces due to spatial variations of surface potential. Phys. Rev. Lett. 2003, 90, 160403. [Google Scholar] [CrossRef]
- Behunin, R.O.; Dalvit, D.A.R.; Decca, R.S.; Genet, C.; Jung, I.W.; Lambrecht, A.; Liscio, A.; López, D.; Reynaud, S.; Schnoering, G.; et al. Kelvin probe force microscopy of metallic surfaces used in Casimir force measurements. Phys. Rev. A 2014, 90, 062115. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Conductivity of dielectric and thermal atom-wall interaction. J. Phys. A Math. Theor. 2008, 41, 312002. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Casimir effect invalidates the Drude model for transverse electric evanescent waves. Physics 2023, 5, 952–967. [Google Scholar] [CrossRef]
- Törmä, P.; Barnes, W.L. Strong coupling between surface plasmon polaritons and emitters: A review. Rep. Prog. Phys. 2015, 78, 013901. [Google Scholar] [CrossRef] [PubMed]
- Klimchitskaya, G.L.; Mostepanenko, V.M.; Svetovoy, V.B. Probing the response of metals to low-frequency s-polarized evanescent fields. EPL (Europhys. Lett.) 2022, 139, 66001. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M.; Svetovoy, V.B. Experimentum crucis for electromagnetic eesponse of metals to evanescent waves and the Casimir puzzle. Universe 2022, 8, 574. [Google Scholar] [CrossRef]
- Henkel, C. Rectified Lorentz force from thermal current fluctuations. Physics 2024, 6, 568–578. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. The Casimir force between two graphene sheets: 2D Fresnel reflection coefficients, contributions of different polarizations, and the role of evanescent waves. Physics 2023, 5, 1013–1030. [Google Scholar] [CrossRef]
- Asorey, M.; Iuliano, C.; Ezquerro, F. Casimir energy in (2 + 1)-dimensional field theories. Physics 2024, 6, 613–628. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.B.; Ealet, B.N.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109. [Google Scholar] [CrossRef]
- Garcia, J.C.; de Lima, D.B.; Assali, L.V.C.; Justo, J.F. Group IV graphene- and graphane-like nanosheets. J. Phys. Chem. C 2011, 115, 13242. [Google Scholar] [CrossRef]
- Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A.S.; Su, H.; Castro Neto, A.H. Phosphorene: From theory to applications. Nat. Rev. Mater. 2016, 1, 16061. [Google Scholar] [CrossRef]
- Brax, P.; Fichet, S. Casimir forces in CFT with defects and boundaries. Physics 2024, 6, 544–667. [Google Scholar] [CrossRef]
- Khusnutdinov, N.; Emelianova, N. The normal Casimir force for lateral moving planes with isotropic conductivities. Physics 2024, 6, 148–163. [Google Scholar] [CrossRef]
- Dedkov, G.V. Casimir–Lifshitz frictional heating in a system of parallel metallic plates. Physics 2024, 6, 13–30. [Google Scholar] [CrossRef]
- Inui, N. Stabilizing diamagnetic levitation of a graphene flake through the Casimir effect. Physics 2023, 5, 923–935. [Google Scholar] [CrossRef]
- Brevik, I.; Pal, S.; Li, Y.; Gholamhosseinian, A.; Boström, M. Axion electrodynamics and the Casimir effect. Physics 2024, 6, 407–421. [Google Scholar] [CrossRef]
- Boström, M.; Gholamhosseinian, A.; Pal, S.; Li, Y.; Brevik, I. Semi-classical electrodynamics and the Casimir effect. Physics 2024, 6, 456–467. [Google Scholar] [CrossRef]
- Marachevsky, V.N.; Sidelnikov, A.A. Casimir interaction of Chern–Simons layers on substrates via vacuum stress tensor. Physics 2024, 6, 496–514. [Google Scholar] [CrossRef]
- Ievlev, I.; Good, M.R.R. Larmor temperature, Casimir dynamics, and Planck’s law. Physics 2023, 5, 797–813. [Google Scholar] [CrossRef]
- Gorban, M.J.; Julius, W.D.; Brown, P.M.; Matulevich, J.A.; Radhakrishnan, R.; Cleaver, G.B. First and second-order forces in the asymmetric dynamical Casimir effect for a single δ-δ′ mirror. Physics 2024, 6, 760–779. [Google Scholar] [CrossRef]
- Bordag, M.; Pirozhenko, I.G. Mass and magnetic moment of the electron and the stability of QED—A critical review. Physics 2024, 6, 237–250. [Google Scholar] [CrossRef]
- Saharian, A. Surface Casimir densities on branes orthogonal to the boundary of anti-de Sitter spacetime. Physics 2023, 5, 1145–1162. [Google Scholar] [CrossRef]
- Grats, Y.V.; Spirin, P. Vacuum interaction of topological strings at short distances. Physics 2023, 5, 1163–1180. [Google Scholar] [CrossRef]
- Bezerra, V.B.; Mota, H.F.S.; Lima, A.P.C.M.; Alencar, G.; Muniz, C.R. Casimir effect in finite temperature and gravitational scenarios. Physics 2024, 6, 1046–1071. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. An alternative response to the off-shell quantum fluctuations: A step forward in resolution of the Casimir puzzle. Eur. Phys. J. C 2020, 80, 900. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Casimir effect for magnetic media: Spatially nonlocal response to the off-shell quantum fluctuations. Phys. Rev. D 2021, 104, 085001. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Theory-experiment comparison for the Casimir force between metallic test bodies: A spatially nonlocal dielectric response. Phys. Rev. A 2022, 105, 012805. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimchitskaya, G.L.; Mostepanenko, V.M. Advances and Prospects in Casimir Physics. Physics 2024, 6, 1072-1082. https://doi.org/10.3390/physics6030066
Klimchitskaya GL, Mostepanenko VM. Advances and Prospects in Casimir Physics. Physics. 2024; 6(3):1072-1082. https://doi.org/10.3390/physics6030066
Chicago/Turabian StyleKlimchitskaya, Galina L., and Vladimir M. Mostepanenko. 2024. "Advances and Prospects in Casimir Physics" Physics 6, no. 3: 1072-1082. https://doi.org/10.3390/physics6030066
APA StyleKlimchitskaya, G. L., & Mostepanenko, V. M. (2024). Advances and Prospects in Casimir Physics. Physics, 6(3), 1072-1082. https://doi.org/10.3390/physics6030066