Impacts of Am Aggregation on the Bulk Properties of Mixed Oxides (U, Am)O2 from First Principles
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. The Bulk Properties for (U, Am)O2 Using the Supercell (96-Atom) Defect Models
3.2. The Structure and Properties of (U, Am)O2 Using the Supercell (12-Atom) Method
3.3. Energetic Properties for (U, Am)O2 Using PBEsol + U
3.4. Elastic Properties of the (U, Am)O2 Using PBEsol + U
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AFM | antiferromagnetic |
CALPHAD | computer coupling of phase diagrams and thermochemistry |
DFT | density functional theory |
DOS | density of states |
FM | ferromagnetic |
GGA | generalized gradient approximation |
HSE | hybrid density functional |
LDA | local density approximation |
MOX | mixed oxides |
PBE | Perdew–Burke–Erzenhorf |
PBEsol | PBE for solids |
SOC | spin–orbit coupling |
SQS | special quasirandom structures |
VASP | Vienna Ab initio Simulation Package |
vdW-opt | van der Waals optimized |
References
- Kelly, J.E. Generation IV international forum: A decade of progress through international cooperation. Prog. Nucl. Energ. 2014, 77, 240–246. [Google Scholar] [CrossRef]
- Crawford, D.C.; Porter, D.L.; Hayes, S.L. Fuels for sodium-cooled fast reactors: US perspective. J. Nucl. Mater. 2007, 371, 202–231. [Google Scholar] [CrossRef]
- Parrish, R.; Aitkaliyeva, A. A review of microstructural features in fast reactor mixed oxides fuels. J. Nucl. Mater. 2018, 510, 644–660. [Google Scholar] [CrossRef]
- Dorado, B.; Garcia, P. First-principles DFT + U modeling of actinide-based alloys: Application to paramagnetic phases of UO2 and (U, Pu) mixed oxides. Phys. Rev. B 2013, 87, 195139. [Google Scholar] [CrossRef]
- Njifon, I.C.; Bertolus, M.; Hayn, R.; Michel, F. Electronic structure investigation of the bulk properties of uranium-plutonium mixed oxides (U, Pu)O2. Inorg. Chem. 2018, 57, 10974–10983. [Google Scholar] [CrossRef]
- Noutack, M.S.T.; Jomard, G.; Freyss, M.; Geneste, G. Structural, electronic and energetic properties of uranium-americium mixed oxides U1-yAmyO2 using DFT + U calculations. J. Phys. Condens. Mat. 2019, 31, 485501. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, S.C.; Gao, T.; Ao, B.Y. Theoretical prediction of some layered Pa2O5 phases: Structure and properties. RSC. Adv. 2019, 9, 31398–31405. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, S.C.; Gao, T.; Ao, B.Y. Density functional investigation of fluorite-based Pa2O5 phases: Structure and properties. Chin. J. Phys. 2020, 66, 115–122. [Google Scholar] [CrossRef]
- James, T.P.; Xavier, A.A.; Mark, S.; Nora, H.L. DFT+U study of the structures and properties of the actinide dioxides. Chin. J. Phys. 2017, 492, 269–278. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band theory and mott insulators: Hubbard U instead of stoner I. Phys. Rev. B 1991, 44, 943–954. [Google Scholar] [CrossRef]
- Liechtenstein, A.I.; Anisimov, V.I.; Zaanen, J. Density functional theory and strong interactions: Orbital ordering in mott-hubbard insulators. Phys. Rev. B 1995, 52, 5467–5470. [Google Scholar] [CrossRef]
- Vathonne, E.; Wiktor, J.; Freyss, M.; Jomard, G.; Bertolus, M. DFT+U investigation of charged point defects and clusters in UO2. J. Phys. Condens. Matter 2014, 26, 325501. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Szotek, Z.; Temmerman, W.M.; Sutton, A.P. Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA + U, SIC-LSDA and EELS study of UO2 and NiO. Phys. Status Solidi A 1998, 166, 429–443. [Google Scholar] [CrossRef]
- Jomard, G.; Amadon, B.; Bottin, F.; Torrent, M. Structural, thermodynamic, and electronic properties of plutonium oxides from first principles. Phys. Rev. B 2008, 78, 075125. [Google Scholar] [CrossRef]
- Noutack, M.S.T.; Geneste, G.; Jomard, G.; Freyss, M. First-principles investigation of the bulk properties of americium dioxide and sesquioxides. Phys. Rev. Mater 2019, 3, 035001. [Google Scholar] [CrossRef]
- Andersson, D.A.; Lezama, J.; Uberuaga, B.P.; Deo, C.; Conradson, S.D. Cooperativity among defect sites in AO2+x and A4O9 (A=U, Np, Pu): Density functional calculations. Phys. Rev. B 2009, 79, 024110. [Google Scholar] [CrossRef]
- Dorado, B.; Garcia, P.; Carlot, G.; Davoisne, C.; Fraczkiewicz, M.; Pasquet, B.; Freyss, M.; Valot, C.; Baldinozzi, G.; Simëone, D.; et al. First-principles calculation and experimental study of oxygen diffusion in uranium dioxide. Phys. Rev. B 2011, 83, 035126. [Google Scholar] [CrossRef]
- Wang, J.; Ewing, R.C.; Becker, U. Electronic structure and stability of hyperstoichiometric UO2+x under pressure. Phys. Rev. B 2013, 88, 024109. [Google Scholar] [CrossRef]
- Prodan, I.D.; Scuseria, G.E.; Sordo, J.A.; Kudin, K.N.; Martin, R.L. Lattice defects and magnetic ordering in plutonium oxides: A hybrid density-functional-theory study of strongly correlated materials. J. Chem. Phys. 2005, 123, 014703. [Google Scholar] [CrossRef]
- Prodan, I.D.; Scuseria, G.E.; Martin, R.L. Assessment of metageneralized gradient approximation and screened Coulomb hybrid density functionals on bulk actinide oxides. Phys. Rev. B 2006, 73, 045104. [Google Scholar] [CrossRef]
- Santini, P.; Amoretti, S.G.; Caciuffo, R.; Magnani, N.; Lander, G.H. Multipolar interactions in f-electron systems: The paradigm of actinide dioxides. Rev. Mod. Phys. 2009, 81, 807–863. [Google Scholar] [CrossRef]
- Caciuffo, R.; Amoretti, G.; Santini, P.; Lander, G.H.; Kulda, J.; Plessis, P.V.D. Magnetic excitations and dynamical Jahn-Teller distortions in UO2. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 13892–13900. [Google Scholar] [CrossRef]
- Wilkins, S.B.; Caciuffo, R.; Detlefs, C.; Rebizant, J.; Colineau, E.; Wastin, F.; Lander, G.H. Direct observation of electric-quadrupolar order in UO2. Phys. Rev. B 2006, 73, 060406. [Google Scholar] [CrossRef]
- Laskowski, R.; Madsen, G.K.H.; Blaha, P.; Schwarz, K. Magnetic structure and electric-field gradients of uranium dioxide: An Ab initio study. Phys. Rev. B 2004, 69, 140408. [Google Scholar] [CrossRef]
- Martin, P.; Grandjean, S.; Valot, C.; Carlot, G.; Ripert, M.; Blanc, P.; Hennig, C. XAS study of (U1−yPuy)O2 solid solutions. J. Alloys Compd. 2007, 444, 410–414. [Google Scholar] [CrossRef]
- Hurtgen, C.; Fuger, J. Self-irradiation effects in americium oxides. Inorg. Nucl. Chem. Lett. 1977, 13, 179–188. [Google Scholar] [CrossRef]
- Huber, E.J.; Holley, C.E. Enthalpies of formation of triuranium octaoxide and uranium dioxide. J. Chem. Thermodyn. 1969, 1, 267–272. [Google Scholar] [CrossRef]
- Guéneau, C.; Baichi, M.; Labroche, D.; Chatillon, C.; Sundman, B. Thermodynamic assessment of the uranium-oxygen system. J. Nucl. Mater. 2002, 304, 161–175. [Google Scholar] [CrossRef]
- Konings, R.J.M.; Beneš, O.; Kovács, A.; Manara, D.; Sedmidubský, D.; Gorokhov, L.; Iorish, V.S.; Yungman, V.; Shenyavskaya, E.; Osina, E. The thermodynamic properties of the f-elements and their compounds. Part 2. The lanthanide and actinide oxides. J. Phys. Chem. Ref. Data 2014, 43, 013101. [Google Scholar] [CrossRef]
Am Content | AFM | FM | EFM–EAFM/Atom (eV) | ||||
---|---|---|---|---|---|---|---|
a0 (Å) | c/a | Gap (eV) | a0 (Å) | c/a | Gap (eV) | ||
UO2 | 5.480 | 1.0 | 2.0 | 5.469 | 1.0 | 1.8 | 0.12 |
12.5% | 5.221 | 1.0 | Metal | 5.223 | 1.0 | Metal | 0.00 |
25% | 5.268 | 0.996 | Metal | 5.269 | 0.996 | Metal | 0.00 |
37.5% | 5.368 | 0.995 | Metal | 5.305 | 0.995 | Metal | 0.00 |
50% | 5.407 | 0.988 | Metal | 5.420 | 0.990 | Metal | 0.00 |
75% | 5.345 | 0.994 | Metal | 5.409 | 0.994 | Metal | 0.00 |
AmO2 | 5.387 | 1.0 | 1.1 | 5.375 | 1.0 | 1.0 | 0.57 |
Compounds | Functional | a0 (Å) | Gap (eV) | μmag (μB) | EFM–EAFM/Atom (eV) | |
---|---|---|---|---|---|---|
AFM | FM | AFM | AFM | |||
UO2 | PBEsol + U | 5.480 | 5.469 | 2.1 | 2.0 | 0.12 |
PBE + U [5] | 5.543 | 5.547 | 2.5 | |||
Experiment [31] | 5.470 | |||||
(U0.75Am0.25)O2 | PBEsol + U | 5.221 | 5.223 | Metal | 7.2 | 0.00 |
(U0.5Am0.5)O2 | PBEsol + U | 5.226 | 5.227 | Metal | 7.0 | 0.00 |
(U0.25Am0.75)O2 | PBEsol + U | 5.236 | 5.236 | Metal | 7.1 | 0.00 |
AmO2 | PBEsol + U | 5.387 | 5.375 | 1.1 | 5.3 | 0.57 |
Experiment [32] | 5.376 | 1.3 |
Compound | Ef (eV) | ||||
---|---|---|---|---|---|
Experiment | CALPHAD | PBE + U | vdW-optPBE + U | PBEsol + U | |
UO2 | −11.24 [33] | −11.23 [34] | −10.86 [5] | −11.27 [5] | −11.78 |
(U0.75Am0.25)O2 | −15.39 | ||||
(U0.5Am0.5)O2 | −15.67 | ||||
(U0.25Am0.75)O2 | −15.95 | ||||
AmO2 | −9.51 [35] | −8.29 [21] | −10.46 |
Functional | UO2 | (U0.75Am0.25)O2 | (U0.5Am0.5)O2 | (U0.25Am0.75)O2 | AmO2 | |
---|---|---|---|---|---|---|
C11 (GPa) | PBEsol + U | 383 | 358 | 325 | 274 | 321 |
PBE + U [5] | 364 | 363 | ||||
LDA + U [4] | 401 | |||||
experiment [33] | 389 | |||||
C12 (GPa) | PBEsol + U | 126 | 92 | 80 | 75 | 161 |
PBE + U [5] | 112 | 102 | ||||
LDA + U [4] | 132 | |||||
experiment [33] | 119 | |||||
C44 (GPa) | PBEsol + U | 72.3 | 25 | 43 | 37 | 58 |
PBE + U [5] | 58 | 71 | ||||
LDA + U [4] | 94 | |||||
experiment [33] | 60 | |||||
B0 (GPa) | PBEsol + U | 212 | 181 | 162 | 141 | 215 |
PBE + U [5] | 196 | 189 | ||||
LDA + U [4] | 222 | |||||
experiment [33] | 207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Yang, Z.; Yu, X.; Gao, T. Impacts of Am Aggregation on the Bulk Properties of Mixed Oxides (U, Am)O2 from First Principles. Physics 2024, 6, 1240-1250. https://doi.org/10.3390/physics6040076
Liu T, Yang Z, Yu X, Gao T. Impacts of Am Aggregation on the Bulk Properties of Mixed Oxides (U, Am)O2 from First Principles. Physics. 2024; 6(4):1240-1250. https://doi.org/10.3390/physics6040076
Chicago/Turabian StyleLiu, Tao, Ziyi Yang, Xiaoyan Yu, and Tao Gao. 2024. "Impacts of Am Aggregation on the Bulk Properties of Mixed Oxides (U, Am)O2 from First Principles" Physics 6, no. 4: 1240-1250. https://doi.org/10.3390/physics6040076
APA StyleLiu, T., Yang, Z., Yu, X., & Gao, T. (2024). Impacts of Am Aggregation on the Bulk Properties of Mixed Oxides (U, Am)O2 from First Principles. Physics, 6(4), 1240-1250. https://doi.org/10.3390/physics6040076