The Two-Thirds Power Law Derived from a Higher-Derivative Action
Abstract
:1. Introduction
2. Two-Thirds Law: Kinematical Considerations
3. Dynamical Principle—Lagrangian Formalism
3.1. The Model
3.2. The Case
3.3. The Case of a Linear Potential Function
3.4. The Case of a Vanishing Potential Function
4. Hamiltonian Formalism
4.1. Ostrogradsky’s Approach
4.2. Action Variables
4.3. Application to the Pais–Uhlenbeck Oscillator
5. Conclusions
5.1. Variational Principle for 2/3-PL
- The actions (54) naturally lead to the 2/3-PL, provided one individual is able to fix the initial condition . For a motion with vanishing initial speed, one just needs to impose , irrespective of the choice of potential function U.
- The actions (54) may lead to quite a large variety of trajectories satisfying the 2/3-PL according to the choice made for U. In the case of harmonic potential, elliptic trajectories are recovered, which are the best-known case in which this law appears.
- The action variable makes the mean squared jerk explicitly appear, and it is known that minimising this function (maximising smoothness) is an experimentally observed principle in motor control [19]. Mechanics imposes that is constant but not necessarily minimal. However, provided is a mass scale, has the dimension of the mechanical power. Minimising during motion is therefore a way to minimise power expenditure. Figure 2 gives a schematic representation of in this case.
5.2. First Principles Shaping Voluntary Motion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ostrogradsky, M. Mémoires sur les équations différentielles, relatives au problème des isopérimètres. Mem. Acad. Imp. Sci. St.-Pétersb. Sci. Math. Phys. 1850, 4, 385–517. Available online: https://babel.hathitrust.org/cgi/pt?id=mdp.39015038710128&seq=405 (accessed on 27 October 2024).
- Sherrington, C.S. The Integrative Action of the Nervous System; Yale University Press: New Haven, CT, USA, 1920; Available online: https://liberationchiropractic.com/wp-content/uploads/research/1906Sherrington-IntegrativeAction.pdf (accessed on 27 October 2024).
- Todorov, E.; Jordan, M.I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 2002, 5, 1226–1235. [Google Scholar] [CrossRef] [PubMed]
- Todorov, E. Optimality principles in sensorimotor control. Nat. Neurosci. 2004, 7, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Melendez-Calderon, A.; Roby-Brami, A.; Burdet, E. On the analysis of movement smoothness. J. Neuroeng. Rehabil. 2015, 12, 112. [Google Scholar] [CrossRef]
- Todorov, E.; Jordan, M.I. Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. J. Neurophysiol. 1998, 80, 696–714. [Google Scholar] [CrossRef]
- Lacquaniti, F.; Terzuolo, C.; Viviani, P. The law relating the kinematic and figural aspects of drawing movements. Acta Psychol. 1983, 54, 115–130. [Google Scholar] [CrossRef]
- Zago, M.; Matic, A.; Flash, T.; Gomez-Marin, A.; Lacquaniti, F. The speed-curvature power law of movements: A reappraisal. Exp. Brain Res. 2018, 236, 69–82. [Google Scholar] [CrossRef]
- Huh, D.; Sejnowski, T.J. Spectrum of power laws for curved hand movements. Proc. Nat. Acad. Sci. USA 2015, 112, E3950–E3958. [Google Scholar] [CrossRef]
- Karklinsky, M.; Flash, T. Timing of continuous motor imagery: The two-thirds power law originates in trajectory planning. J. Neurophysiol. 2015, 113, 2490–2499. [Google Scholar] [CrossRef]
- Papaxanthis, C.; Paizis, C.; White, O.; Pozzo, T.; Stucchi, N. The relation between geometry and time in mental actions. PLoS ONE 2012, 7, e51191. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics. Volume 1: Mechanics; Elsevier Butterworth–Heinemann/Elsevier Ltd.: Oxford, UK, 1976. [Google Scholar] [CrossRef]
- Synge, J.L.; Griffith, B.A. Principles of Mechanics; McGraw-Hill, Inc.: New York, NY, USA, 1959; Available online: https://archive.org/details/principlesofmech0003john/ (accessed on 27 October 2024).
- Spindel, P. Mécanique. Volume 1: Mécanique Newtonienne; Gordon and Breach: Paris, France, 2004. [Google Scholar]
- Matic, A.; Gomez-Marin, A. Geometric purity, kinematic scaling and dynamic optimality in drawing movements beyond ellipses. J. Math. Psychol. 2020, 99, 102453. [Google Scholar] [CrossRef]
- Lebedev, S.; Tsui, W.H.; Gelder, P.V. Drawing movements as an outcome of the principle of least action. J. Math. Psychol. 2001, 45, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Pollick, F.E.; Maoz, U.; Handzel, A.A.; Giblin, P.J.; Sapiro, G.; Flash, A.T. Three-dimensional arm movements at constant equi-affine speed. Cortex 2009, 45, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Pais, A.; Uhlenbeck, G.E. On field theories with nonlocalized action. Phys. Rev. 1950, 79, 145–165. [Google Scholar] [CrossRef]
- Flash, T.; Handzel, A.A. Affine differential geometry analysis of human arm movements. Biol. Cybern. 2007, 96, 577–601. [Google Scholar] [CrossRef]
- Richardson, M.J.E.; Flash, T. Comparing smooth arm movements with the two-thirds power law and the related segmented-control hypothesis. J. Neurosci. 2002, 22, 8201–8211. [Google Scholar] [CrossRef]
- Flash, T.; Hogan, N. The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 1985, 5, 1688–1703. [Google Scholar] [CrossRef]
- José, J.V.; Saletan, E.J. Classical Dynamics: A Contemporary Approach; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Boulanger, N.; Buisseret, F.; Dierick, F.; White, O. Higher-derivative harmonic oscillators: Stability of classical dynamics and adiabatic invariants. Eur. Phys. J. C 2019, 79, 60. [Google Scholar] [CrossRef]
- Uno, Y.; Kawato, M.; Suzuki, R. Formation and control of optimal trajectory in human multijoint arm movement. Biol. Cybern. 1989, 61, 89–101. [Google Scholar] [CrossRef]
- Atkeson, C.G.; Hollerbach, J.M. Kinematic features of unrestrained vertical arm movements. J. Neurosci. 1985, 5, 2318–2330. [Google Scholar] [CrossRef]
- Fitts, P.M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 1954, 47, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Papaxanthis, C.; Pozzo, T.; Popov, K.E.; McIntyre, J. Hand trajectories of vertical arm movements in one-G and zero-G environments. Evidence for a central representation of gravitational force. Exp. Brain Res. 1998, 120, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.H. Optimal strategies for movement: Success with variability. Nat. Neurosci. 2002, 5, 1110–1111. [Google Scholar] [CrossRef] [PubMed]
- Stahn, A.C.; Bucher, D.; zu Eulenburg, P.; Denise, P.; Smith, N.; Pagnini, F.; White, O. Paving the way to better understand the effects of prolonged spaceflight on operational performance and its neural bases. npj Microgravity 2023, 9, 59. [Google Scholar] [CrossRef]
- Boulanger, N.; Buisseret, F.; Dehouck, V.; Dierick, F.; White, O. Motor strategies and adiabatic invariants: The case of rhythmic motion in parabolic flights. Phys. Rev. E 2021, 104, 024403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boulanger, N.; Buisseret, F.; Dierick, F.; White, O. The Two-Thirds Power Law Derived from a Higher-Derivative Action. Physics 2024, 6, 1251-1263. https://doi.org/10.3390/physics6040077
Boulanger N, Buisseret F, Dierick F, White O. The Two-Thirds Power Law Derived from a Higher-Derivative Action. Physics. 2024; 6(4):1251-1263. https://doi.org/10.3390/physics6040077
Chicago/Turabian StyleBoulanger, Nicolas, Fabien Buisseret, Frédéric Dierick, and Olivier White. 2024. "The Two-Thirds Power Law Derived from a Higher-Derivative Action" Physics 6, no. 4: 1251-1263. https://doi.org/10.3390/physics6040077
APA StyleBoulanger, N., Buisseret, F., Dierick, F., & White, O. (2024). The Two-Thirds Power Law Derived from a Higher-Derivative Action. Physics, 6(4), 1251-1263. https://doi.org/10.3390/physics6040077