Accelerating Charge: Add-Ons to Rest Mass and Field Energy
Abstract
:1. Introduction
2. Model
3. Energy–Momentum Tensors for Particle and Field
4. Effect of Radiation Friction Force
5. Structure of Field in Vicinity of Charge
6. Results and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Green Function: Interpretation and Application
References
- Sommerfeld, A. Über die Beugung und Bremsung der Elektronen. Ann. Phys. 1931, 403, 257–330. [Google Scholar] [CrossRef]
- Bethe, H.A.; Maximon, L.C. Theory of bremsstrahlung and pair production. I. Differential cross section. Phys. Rev. 1954, 93, 768–784. [Google Scholar] [CrossRef]
- Davies, H.; Bethe, H.A.; Maximon, L.C. Theory of bremsstrahlung and pair production. II. Integral cross section for pair production. Phys. Rev. 1954, 93, 788–795. [Google Scholar] [CrossRef]
- Karzas, W.J.; Latter, R. Electron radiative transitions in a Coulomb field. Astrophys. J. Suppl. 1962, 6, 167–212. [Google Scholar] [CrossRef]
- Haug, E. Bremsstrahlung and pair production in the field of free electrons. Z. Naturforsch. A 1975, 30, 1099–1113. [Google Scholar] [CrossRef]
- Haug, E. Electron-electron bremsstrahlung in a hot plasma. Z. Naturforsch. A 1975, 30, 1546–1552. [Google Scholar] [CrossRef]
- Koch, H.W.; Motz, J.W. Bremsstrahlung cross-section formulas and related data. Rev. Mod. Phys. 1959, 31, 920–955. [Google Scholar] [CrossRef]
- Akhiezer, A.I.; Berestetskii, V.B. Quantum Electrodynamics; Intersience Publishers/John Wiley & Sons, Inc.: New York, NY, USA, 1965; Available online: https://archive.org/details/akhiezer-berestetskii-quantum-electrodynamics/ (accessed on 5 November 2024).
- Blumenthal, G.R.; Gould, R.J. Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases. Rev. Mod. Phys. 1970, 42, 237–271. [Google Scholar] [CrossRef]
- Bekefi, G. Radiation Processes in Plasmas; John Wiley & Sons, Inc.: New York, NY, USA, 1966; Available online: https://archive.org/details/radiationprocess0000beke/ (accessed on 5 November 2024).
- Jauch, J.M.; Rohrlich, F. The Theory of Photons and Electrons. The Relativistic Quantum Field Theory of Charged Particles with Spin One-Half; Springer: Berlin/Hedelberg, Germany, 1976. [Google Scholar] [CrossRef]
- Haug, E.; Nakel, W. The Elementary Process of Bremsstrahlung; World Scientific: Singapore, 2004. [Google Scholar] [CrossRef]
- Munirov, V.R.; Fisch, N.J. Suppression of bremsstrahlung losses from relativistic plasma with energy cutoff. Phys. Rev. E 2023, 107, 065205. [Google Scholar] [CrossRef]
- Jarrott, L.C.; Kemp, A.J.; Divol, L.; Mariscal, D.; Westover, B.; McGuffey, C.; Beg, F.N.; Suggit, M.; Chen, C.; Hey, D.; et al. Kα and bremsstrahlung X-ray radiation backlighter sources from short pulse laser driven silver targets as a function of laser pre-pulse energy. Phys. Plasmas 2014, 21, 031211. [Google Scholar] [CrossRef]
- Cheng, S.; Hill, F.A.; Heubel, E.V.; Velásquez-García, L.F. Low-bremsstrahlung X-ray source using a low-voltage high-current-density nanostructured field emission cathode and a transmission anode for markerless soft tissue imaging. J. Microelectromech. Syst. 2015, 24, 373–383. [Google Scholar] [CrossRef]
- Huntington, C.M.; McNaney, J.M.; Gumbrell, E.; Krygier, A.; Wehrenberg, C.; Park, H.-S. Bremsstrahlung X-ray generation for high optical depth radiography applications on the National Ignition Facility. Rev. Sci. Instrum. 2018, 89, 10G121. [Google Scholar] [CrossRef] [PubMed]
- Underwood, C.I.D.; Baird, C.D.; Murphy, C.D.; Armstrong, C.D.; Thornton, C.; Finlay, O.J.; Streeter, M.J.V.; Selwood, M.P.; Brierley, N.; Cipiccia, S.; et al. Development of control mechanisms for a laser wakefield accelerator-driven bremsstrahlung x-ray source for advanced radiographic imaging. Plasma Phys. Control. Fusion 2020, 62, 124002. [Google Scholar] [CrossRef]
- Singh, S.; Armstrong, C.D.; Kang, N.; Ren, L.; Liu, H.; Hua, N.; Rusby, D.R.; Klimo, O.; Versaci, R.; Zhang, Y.; et al. Bremsstrahlung emission and plasma characterization driven by moderately relativistic laser–plasma interactions. Plasma Phys. Control. Fusion 2021, 63, 035004. [Google Scholar] [CrossRef]
- Vyskočil, J.; Klimo, O.; Weber, S. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets. Plasma Phys. Control. Fusion 2018, 60, 054013. [Google Scholar] [CrossRef]
- Stevens, J.; von Goeler, S.; Bernabei, S.; Bitter, M.; Chu, T.; Efthimion, P.; Fisch, N.; Hooke, W.; Hosea, J.; Jobes, F.; et al. Modelling of the electron distribution based on bremsstrahlung emission during lower-hybrid current drive on PLT. Nucl. Fusion 1985, 25, 1529–1541. [Google Scholar] [CrossRef]
- Voss, K.E.; Fisch, N.J. Inverse problem for bremsstrahlung radiation. Phys. Fluids B Plasma Phys. 1992, 4, 762–763. [Google Scholar] [CrossRef]
- Peysson, Y.; Arslanbekov, R. Measurement of the non-thermal bremsstrahlung emission between 30 and 200 keV with a high time-space resolution on the tokamak TORE SUPRA. Nucl. Instrum. Meth. Phys. Res. A Accelerat. Spectrom. Detect. Assoc. Equip. 1996, 380, 423–426. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Wan, B.N.; Lin, S.Y.; Shi, Y.J.; Hu, L.Q.; Ma, T.P. Measurement of the non-thermal bremsstrahlung emission between 20 and 7000 keV in the HT-7 Tokamak. Nucl. Instrum. Meth. Phys. Res. A Accelerat. Spectrom. Detect. Assoc. Equip. 2006, 560, 558–563. [Google Scholar] [CrossRef]
- Chen, C.D.; King, J.A.; Key, M.H.; Akli, K.U.; Beg, F.N.; Chen, H.; Freeman, R.R.; Link, A.; Mackinnon, A.J.; MacPhee, A.G.; et al. A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters. Rev. Sci. Instrum. 2006, 79, 10E305. [Google Scholar] [CrossRef]
- Meadowcroft, A.L.; Edwards, R.D. High-energy bremsstrahlung diagnostics to characterize hot-electron production in short-pulse laser-plasma experiments. IEEE Trans. Plasma Sci. 2012, 40, 1992–2001. [Google Scholar] [CrossRef]
- Swanson, C.; Jandovitz, P.; Cohen, S.A. Using Poisson-regularized inversion of Bremsstrahlung emission to extract full electron energy distribution functions from x-ray pulse-height detector data. AIP Adv. 2018, 8, 025222. [Google Scholar] [CrossRef]
- Kagan, G.; Landen, O.L.; Svyatskiy, D.; Sio, H.; Kabadi, N.V.; Simpson, R.A.; Gatu Johnson, M.; Frenje, J.A.; Petrasso, R.D.; Shah, R.C.; et al. Inference of the electron temperature in inertial confinement fusion implosions from the hard X-ray spectral continuum. Contrib. Plasma Phys. 2019, 59, 181–188. [Google Scholar] [CrossRef]
- Kumar, J.; Pandya, S.P.; Sharma, P. Conceptual design of multichannel fast electron bremsstrahlung detection system to study fast electron dynamics during lower hybrid current drive in ADITYA-U tokamak. J. Instrum. 2023, 18, P03040. [Google Scholar] [CrossRef]
- Brown, J.C. The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Sol. Phys. 1971, 18, 489–502. [Google Scholar] [CrossRef]
- Bakhtiari, M.; Kramer, G.J.; Takechi, M.; Tamai, H.; Miura, Y.; Kusama, Y.; Kamada, Y. Role of bremsstrahlung radiation in limiting the energy of runaway electrons in tokamaks. Phys. Rev. Lett. 2005, 94, 215003. [Google Scholar] [CrossRef]
- Embréus, O.; Stahl, A.; Fülöp, T. Effect of bremsstrahlung radiation emission on fast electrons in plasmas. New J. Phys. 2016, 18, 093023. [Google Scholar] [CrossRef]
- Kellogg, E.; Baldwin, J.R.; Koch, D. Studies of cluster X-ray sources. Energy spectra for the Perseus, Virgo, and Coma clusters. Astrophys. J. 1975, 199, 299–306. [Google Scholar] [CrossRef]
- Svensson, R. Electron-positron pair equilibria in relativistic plasmas. Astrophys. J. 1982, 258, 335–348. [Google Scholar] [CrossRef]
- Chluba, J.; Ravenni, A.; Bolliet, B. Improved calculations of electron–ion bremsstrahlung Gaunt factors for astrophysical applications. Mon. Not. R. Astron. Soc. 2020, 34921, 177–194. [Google Scholar] [CrossRef]
- Pradler, J.; Semmelrock, L. Exact Theory of nonrelativistic quadrupole bremsstrahlung. Astrophys. J. 2021, 909, 134. [Google Scholar] [CrossRef]
- Pradler, J.; Semmelrock, L. Accurate Gaunt Factors for nonrelativistic quadrupole bremsstrahlung. Astrophys. J. 2021, 916, 105. [Google Scholar] [CrossRef]
- Pradler, J.; Semmelrock, L. Nonrelativistic electron–ion bremsstrahlung: An approximate formula for all parameters. Astrophys. J. 2021, 922, 57. [Google Scholar] [CrossRef]
- Sunyaev, R.A.; Zeldovich, Y.B. The interaction of matter and radiation in the hot model of the Universe, II. Astrophys. Space Sci. 1970, 7, 20–30. [Google Scholar] [CrossRef]
- Chluba, J.; Sunyaev, R.A. The evolution of CMB spectral distortions in the early Universe. Mon. Not. R. Astron. Soc. 2012, 419, 1294–1314. [Google Scholar] [CrossRef]
- Narayan, R.; Yi, I. Advection-dominated accretion: Underfed black holes and neutron stars. Astrophys. J. 1995, 452, 710–735. [Google Scholar] [CrossRef]
- Yarza, R.; Wong, G.N.; Ryan, B.R.; Gammie, C.F. Bremsstrahlung in GRMHD models of accreting black holes. Astrophys. J. 2020, 898, 50. [Google Scholar] [CrossRef]
- Sarazin, C.L. X-ray emission from clusters of galaxies. Rev. Mod. Phys. 1986, 58, 1–115. [Google Scholar] [CrossRef]
- Sarazin, C.L.; Kempner, J.C. Nonthermal bremsstrahlung and hard X-Ray emission from clusters of galaxies. Astrophys. J. 2000, 533, 73–83. [Google Scholar] [CrossRef]
- Pearce, F.R.; Thomas, P.A.; Couchman, H.M.P.; Edge, A.C. The effect of radiative cooling on the X-ray properties of galaxy clusters. Mon. Not. R. Astron. Soc. 2000, 317, 1029–1040. [Google Scholar] [CrossRef]
- Haug, E. Contribution of electron-electron bremsstrahlung to solar hard X-radiation during flares. Solar Phys. 1975, 45, 453–458. [Google Scholar] [CrossRef]
- Holman, G.D.; Sui, L.; Schwartz, R.A.; Emslie, A.G. Electron bremsstrahlung hard X-Ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare. Astrophys. J. 2003, 595, L97–L101. [Google Scholar] [CrossRef]
- Kontar, E.P.; Emslie, A.G.; Massone, A.M.; Piana, M.; Brown, J.C.; Prato, M. Electron-electron bremsstrahlung emission and the inference of electron flux spectra in solar flares. Astrophys. J. 2007, 670, 857–861. [Google Scholar] [CrossRef]
- Wen, Z.G.; Yuan, J.P.; Wang, N.; Li, D.; Chen, J.L.; Wang, P.; Wu, Q.D.; Yan, W.M.; Yuen, R.; Wang, Z. A Single-pulse study of the subpulse drifter PSR J1631+1252 discovered at FAST. Astrophys. J. 2022, 929, 71. [Google Scholar] [CrossRef]
- Deng, Z.-L.; Li, X.-D.; Gao, Z.-F.; Shao, Y. Evolution of LMXBs under different magnetic braking prescriptions. Astrophys. J. 2021, 909, 174. [Google Scholar] [CrossRef]
- Gao, Z.-F.; Wang, N.; Shan, H.; Li, X.-D.; Wang, W. The dipole magnetic field and spin-down evolutions of the high braking index pulsar PSR J1640–4631. Astrophys. J. 2017, 849, 19. [Google Scholar] [CrossRef]
- Gao, Z.F.; Li, X.-D.; Wang, N.; Yuan, J.P.; Wang, P.; Peng, Q.H.; Du, Y.J. Constraining the braking indices of magnetars. Mon. Not. R. Astron. Soc. 2016, 456, 55–65. [Google Scholar] [CrossRef]
- Bethe, H.; Heitler, W. On the stopping of fast particles and on the creation of positive electrons. Proc. R. Soc. Lond. A Math. Phys. Engin. Sci. 1934, 146, 83–112. [Google Scholar] [CrossRef]
- Heitler, W. The Quantum Theory of Radiation; Oxford University Press: Oxford, UK, 1947; Available online: https://archive.org/details/in.ernet.dli.2015.37198/ (accessed on 5 November 2024).
- Keefe, D. Inertial confinement fusion. Annu. Rev. Nucl. Part. Sci. 1982, 32, 391–441. [Google Scholar] [CrossRef]
- Craxton, R.S.; Anderson, K.S.; Boehly, T.R.; Goncharov, V.N.; Harding, D.R.; Knauer, J.P.; McCrory, R.L.; McKenty, P.W.; Meyerhofer, D.D.; Myatt, J.F.; et al. Direct-drive inertial confinement fusion: A review. Phys. Plasmas 2015, 22, 110501. [Google Scholar] [CrossRef]
- Firouzi Farrashbandi, N.; Eslami-Kalantari, M. Inverse bremsstrahlung absorption in laser-fusion plasma. J. Theor. Appl. Phys. 2020, 14, 261–264. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Classical theory of radiating electrons. Proc. R. Soc. Lond. A Math. Phys. Engin. Sci. 1938, 167, 148–169. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999; Available online: https://archive.org/details/john-david-jackson-classical-electrodynamics-wiley-1999/ (accessed on 5 November 2024).
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon Press plc/Elsevier Ltd: Oxford, UK, 2013; Available online: https://www.sciencedirect.com/book/9780080250724/the-classical-theory-of-fields (accessed on 5 November 2024).
- Landau, L.D.; Lifshitz, E.M. Mechanics; Elsevier Butterworth-Heinemann/Elsevier Ltd.: Oxford, UK, 1982. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman and Company: San Francisco, CA, USA, 1973; Available online: https://physicsgg.me/wp-content/uploads/2023/05/misner_thorne_wheeler_gravitation_freema.pdf (accessed on 5 November 2024).
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics; The California Institute of Technology: Pasadena, CA, USA, 2013; Volume 2, Ch. 28; Available online: https://www.feynmanlectures.caltech.edu/II_28.html (accessed on 5 November 2024).
- Fermi, E. Über einen Widerspruch zwischen der elektrodynamischen und der relativistischen Theorie der elektromagnetischen Masse. Phys. Z. 1922, 23, 340–344. Available online: https://archive.org/details/physikalische-zeitschrift-vol-23/page/340/mode/2up (accessed on 5 November 2024).
- Fermi, E. Concerning a contradiction between the electrodynamic and relativistic theory of electromagnetic mass. Wikisource. 15 September 2023. Available online: https://en.wikisource.org/wiki/Translation:Electrodynamic_and_Relativistic_Theory_of_Electromagnetic_Mass (accessed on 5 November 2024).
- Schwinger, J. Electromagnetic mass revisited. Found. Phys. 1983, 13, 373–383. [Google Scholar] [CrossRef]
- Rohrlich, F. The dynamics of a charged sphere and the electron. Am. J. Phys. 1997, 65, 1051–1056. [Google Scholar] [CrossRef]
- Gralla, S.E.; Harte, A.I.; Wald, R.M. Rigorous derivation of electromagnetic self-force. Phys. Rev. D 2009, 80, 024031. [Google Scholar] [CrossRef]
- Larmor, J.J. On the theory of the magnetic influence on spectra; and on the radiation from moving ions. Philos. Mag. 1897, 44, 503–512. [Google Scholar] [CrossRef]
- Morse, P.M.; Feshbach, H. Methods of Theoretical Physics. Part I; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1953; Available online: https://archive.org/details/methodsoftheoret0000phil_w6e3 (accessed on 5 November 2024).
- Lamb, H. Hydrodynamics; Cambridge University Press: New York, NY, USA, 1997; Available online: https://archive.org/details/hydrodynamics00lamb/ (accessed on 5 November 2024).
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Pergamon Press plc/Elsevier Ltd.: Oxford, UK, 1987. [Google Scholar] [CrossRef]
- Ginzburg, V.L. Radiation and radiation friction force in uniformly accelerated motion of a charge. Sov. Phys. Uspekhi 1970, 12, 565–574. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tito, E.P.; Pavlov, V.I. Accelerating Charge: Add-Ons to Rest Mass and Field Energy. Physics 2024, 6, 1264-1280. https://doi.org/10.3390/physics6040078
Tito EP, Pavlov VI. Accelerating Charge: Add-Ons to Rest Mass and Field Energy. Physics. 2024; 6(4):1264-1280. https://doi.org/10.3390/physics6040078
Chicago/Turabian StyleTito, Elizabeth P., and Vadim I. Pavlov. 2024. "Accelerating Charge: Add-Ons to Rest Mass and Field Energy" Physics 6, no. 4: 1264-1280. https://doi.org/10.3390/physics6040078
APA StyleTito, E. P., & Pavlov, V. I. (2024). Accelerating Charge: Add-Ons to Rest Mass and Field Energy. Physics, 6(4), 1264-1280. https://doi.org/10.3390/physics6040078