Optical Medium Approach: Simplifying General Relativity and Nonlinear Electrodynamics for Educational Purposes
Abstract
:1. Introduction
2. The Concept of the Optical Medium Approach
3. The Effective Refractive Index in the Case of the Schwarzschild Solution
4. The Effective Refractive Index in the Case of a Rotating Object
5. The Effective Refractive Index in Nonlinear Vacuum Electrodynamics
6. Application on Magnetars
7. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Kersting, M.; Henriksen, E.K.; Bøe, M.V.; Angell, C. General relativity in upper secondary school: Design and evaluation of an online learning environment using the model of educational reconstruction. Phys. Rev. Phys. Educ. Res. 2018, 14, 010130. [Google Scholar] [CrossRef]
- Henriksen, E.K.; Bungum, B.; Angell, C.; Tellefsen, C.W.; Frågåt, T.; Vetleseter Bøe, M. Relativity, quantum physics and philosophy in the upper secondary curriculum: Challenges, opportunities and proposed approaches. Phys. Educ. 2014, 49, 678. [Google Scholar] [CrossRef]
- Velentzas, A.; Halkia, K. The use of thought experiments in teaching physics to upper secondary-level students: Two examples from the theory of relativity. Int. J. Sci. Educ. 2013, 35, 3026–3049. [Google Scholar] [CrossRef]
- Lehner, L. Numerical relativity: A review. Class. Quant. Grav. 2001, 18, R25–R86. [Google Scholar] [CrossRef]
- Kaur, T.; Blair, D.; Moschilla, J.; Stannard, W.; Zadnik, M. Teaching Einsteinian physics at schools: Part 1. Models and analogies for relativity. Phys. Educ. 2017, 52, 065012. [Google Scholar] [CrossRef]
- Tamm, I.E. The electrodynamics of anisotropic media in the special theory of relativity. Zh. Rus. Fiz.-Khim. Obsch. Otd. Fiz. [J. Rus. Phys.-Chem. Soc. Phys. Sect.] 1924, 56, 248–262. Available online (English translation): http://neo-classical-physics.info/uploads/3/0/6/5/3065888/tamm_-_ed_of_anisotropic_media_1924.pdf (accessed on 9 November 2024). (In Russian).
- Balazs, N. Effect of a gravitational field, due to a rotating body, on the plane of polarization of an electromagnetic wave. Phys. Rev. 1958, 110, 236–239. [Google Scholar] [CrossRef]
- Alsing, P. The optical-mechanical analogy for stationary metrics in general relativity. Am. J. Phys. 1998, 66, 779–790. [Google Scholar] [CrossRef]
- Roy, S.; Sen, A.K. Trajectory of a light ray in Kerr field: A material medium approach. Astrophys. Space Sci. 2015, 360, 23. [Google Scholar] [CrossRef]
- Sen, A.K. A more exact expression for the gravitational deflection of light, derived using material medium approach. Astrophysics 2010, 53, 560–569. [Google Scholar] [CrossRef]
- Roy, S.; Sen, A.K. Study of gravitational deflection of light ray. J. Phys. Conf. Ser. 2019, 1330, 012002. [Google Scholar] [CrossRef]
- Werner, M.C. Gravitational lensing in the Kerr–Randers optical geometry. Gen. Rel. Grav. 2012, 44, 3047–3057. [Google Scholar] [CrossRef]
- Beissen, N.; Utepova, D.; Abishev, M.; Quevedo, H.; Khassanov, M.; Toktarbay, S. Gravitational refraction of compact objects with quadrupoles. Symmetry 2023, 15, 614. [Google Scholar] [CrossRef]
- Beissen, N.; Utepova, D.; Kossov, V.; Toktarbay, S.; Khassanov, M.; Yernazarov, T.; Seydalieva, M. The influence of deformation in compact objects on redshift and radar echo delay. Rec. Contrib. Phys. 2024, 88, 4–11. [Google Scholar] [CrossRef]
- Kruglov, S.I. Vacuum birefringence from the effective Lagrangian of the electromagnetic field. Phys. Rev. D 2007, 75, 117301. [Google Scholar] [CrossRef]
- Kruglov, S.I. On generalized Born–Infeld electrodynamics. J. Phys. A 2010, 43, 375402. [Google Scholar] [CrossRef]
- Plebanski, J. Electromagnetic waves in gravitational fields. Phys. Rev. 1960, 118, 1396–1408. [Google Scholar] [CrossRef]
- Courbin, F.; Minniti, D. Gravitational Lensing: An Astrophysical Tool; Springer: Berlin/Hedelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Abishev, M.; Beissen, N.; Belissarova, F.; Boshkayev, K.; Mansurova, A.; Muratkhan, A.; Quevedo, H.; Toktarbay, S. Approximate perfect fluid solutions with quadrupole moment. Int. J. Mod. Phys. D 2021, 30, 2150096. [Google Scholar] [CrossRef]
- Toktarbay, S.; Quevedo, H.; Abishev, M.; Muratkhan, A. Gravitational field of slightly deformed naked singularities. Eur. Phys. J. C 2022, 82, 382. [Google Scholar] [CrossRef]
- Denisov, V.I.; Sokolov, V.A.; Vasili’ev, M.I. Nonlinear vacuum electrodynamics birefringence effect in a pulsar’s strong magnetic field. Phys. Rev. D 2014, 90, 023011. [Google Scholar] [CrossRef]
- Bliokh, P.V.; Minakov, A.A. Gravitational Lenses; Naukova Dumka: Kiev, Ukraine, 1989. (In Russian) [Google Scholar]
- Simionato, S. Dark Matter and Gravitational Lensing as Teaching Tools for Physics and Astronomy. Ph.D. Thesis, Friedrich-Schiller-Universität Jena, Jena, Germany, 2022. Available online: https://www.db-thueringen.de/receive/dbt_mods_00052048 (accessed on 9 November 2024).
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon Press PLC: Oxford, UK; Elsevier Ltd.: Oxford, UK, 2013; Available online: https://www.sciencedirect.com/book/9780080250724/the-classical-theory-of-fields (accessed on 9 November 2024).
- Islam, J.N. Rotating Fields in General Relativity; Cambridge University Press: New York, NY, USA, 1985. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons, Inc.: New York, NY, USA, 2021. [Google Scholar]
- Heisenberg, W.; Euler, H. Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 1936, 98, 714–732. [Google Scholar] [CrossRef]
- Heisenberg, W.; Euler, H. Consequences of Dirac Theory of the Positron. arXiv 2006, arXiv:physics/0605038. [Google Scholar] [CrossRef]
- Denisov, V.I.; Dolgaya, E.E.; Sokolov, V.A. Nonperturbative QED vacuum birefringence. J. High Energy Phys. 2017, 2017, 105. [Google Scholar] [CrossRef]
- Denisov, V.I.; Denisova, I.P.; Svertilov, S.I. Nonlinear electrodynamic effect of ray bending in the magnetic-dipole field. Dokl. Phys. 2001, 46, 705–707. [Google Scholar] [CrossRef]
- Abishev, M.E.; Toktarbay, S.; Beissen, N.A.; Belissarova, F.B.; Khassanov, M.K.; Kudussov, A.S.; Abylayeva, A.Z. Effects of non-linear electrodynamics of vacuum in the magnetic quadrupole field of a pulsar. Mon. Not. R. Astron. Soc. 2018, 481, 36–43. [Google Scholar] [CrossRef]
- Beissen, N.; Yernazarov, T.; Khassanov, M.; Toktarbay, S.; Taukenova, A.; Talkhat, A. Bending of light by magnetars within generalized Born–Infeld electrodynamics: Insights from the Gauss-Bonnet theorem. Symmetry 2024, 16, 132. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, T. Light bending by nonlinear electrodynamics under strong electric and magnetic field. J. Cosmol. Astropart. Phys. 2011, 2011, 017. [Google Scholar] [CrossRef]
- Kim, J.Y. Deflection of light by magnetars in the generalized Born–Infeld electrodynamics. Eur. Phys. J. C 2022, 82, 485. [Google Scholar] [CrossRef]
- Kruglov, S.I. On generalized ModMax model of nonlinear electrodynamics. Phys. Lett. B 2021, 822, 136633. [Google Scholar] [CrossRef]
- Kruglov, S.I. Notes on Born–Infeld-type electrodynamics. Mod. Phys. Lett. A 2017, 32, 1750201. [Google Scholar] [CrossRef]
- Kruglov, S.I. Born–Infeld-type electrodynamics and magnetic black holes. Ann. Phys. 2017, 383, 550–559. [Google Scholar] [CrossRef]
- Kruglov, S.I. Magnetized black holes and nonlinear electrodynamics. Int. J. Mod. Phys. A 2017, 32, 1750147. [Google Scholar] [CrossRef]
- Kruglov, S.I. Nonlinear electrodynamics and magnetic black holes. Ann. Phys. 2017, 529, 1700073. [Google Scholar] [CrossRef]
- Beissen, N.; Abishev, M.; Toktarbay, S.; Yernazarov, T.; Aimuratov, Y.; Khassanov, M. Nonlinear electrodynamical lensing of electromagnetic waves on the dipole magnetic field of the magnetar. Int. J. Mod. Phys. D 2023, 32, 2350106. [Google Scholar] [CrossRef]
- Manchester, R.N. Pulsars. In Gravitational Radiation, Collapsed Objects and Exact Solutions. Proceedings of the Einstein Centenary Summer School, Perth, Australia, 01 January, 1979; Edwards, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 34–66. [Google Scholar] [CrossRef]
- Takibayev, N.; Nasirova, D.; Katō, K.; Kurmangaliyeva, V. Excited nuclei, resonances and reactions in neutron star crusts. J. Phys. Conf. Ser. 2018, 940, 012058. [Google Scholar] [CrossRef]
- Riffert, H.; Meszaros, P. Gravitational light bending near neutron stars. I. Emission from columns and hot spots. Astrophys. J. 1988, 325, 207–217. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Pergamon Press/Elsevier: Oxford, UK, 2013; Available online: https://www.sciencedirect.com/book/9780080264820/principles-of-optics (accessed on 9 November 2024).
- Gibbons, G.W.; Werner, M.C. Applications of the Gauss Bonnet theorem to gravitational lensing. Class. Quant. Grav. 2008, 25, 235009. [Google Scholar] [CrossRef]
- Ishihara, A.; Suzuki, Y.; Ono, T.; Asada, H. Finite-distance corrections to the gravitational bending angle of light in the strong deflection limit. Phys. Rev. D 2017, 95, 044017. [Google Scholar] [CrossRef]
- Jusufi, K.; Övgün, A.; Saavedra, J.; Vásquez, Y.; Gonzalez, P. Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem. Phys. Rev. D 2018, 97, 124024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toktarbay, S.; Beissen, N.; Khassanov, M.; Aitassov, T.; Sadu, A. Optical Medium Approach: Simplifying General Relativity and Nonlinear Electrodynamics for Educational Purposes. Physics 2024, 6, 1294-1305. https://doi.org/10.3390/physics6040080
Toktarbay S, Beissen N, Khassanov M, Aitassov T, Sadu A. Optical Medium Approach: Simplifying General Relativity and Nonlinear Electrodynamics for Educational Purposes. Physics. 2024; 6(4):1294-1305. https://doi.org/10.3390/physics6040080
Chicago/Turabian StyleToktarbay, Saken, Nurzada Beissen, Manas Khassanov, Temirbolat Aitassov, and Amina Sadu. 2024. "Optical Medium Approach: Simplifying General Relativity and Nonlinear Electrodynamics for Educational Purposes" Physics 6, no. 4: 1294-1305. https://doi.org/10.3390/physics6040080
APA StyleToktarbay, S., Beissen, N., Khassanov, M., Aitassov, T., & Sadu, A. (2024). Optical Medium Approach: Simplifying General Relativity and Nonlinear Electrodynamics for Educational Purposes. Physics, 6(4), 1294-1305. https://doi.org/10.3390/physics6040080