Nanoscale Carbon-Polymer Dots for Theranostics and Biomedical Exploration
Abstract
:1. Introduction
2. Carbon Polymer Dot (CPDs), Carbon Dots (CDs) and Polymer Dots (PDs)
3. Current Status and Correlation of Different CPDs
4. Bio-Conjugation and Surface Functionalization
5. Biomedical and Theranostic Applications of Carbon Polymer Dots (CPDs)
6. Perspective and Future Directions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Adv. Sci. 2019, 6, 1901316. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, S.; Shao, J.; Yang, B. Polymer carbon dots—A highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 610–615. [Google Scholar] [CrossRef]
- Shao, J.; Zhu, S.; Liu, H.; Song, Y.; Tao, S.; Yang, B. Full-Color Emission Polymer Carbon Dots with Quench-Resistant Solid-State Fluorescence. Adv. Sci. 2017, 4, 1700395. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Zhu, S.; Feng, T.; Xia, C.; Song, Y.; Yang, B. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review. Mater. Today Chem. 2017, 6, 13–25. [Google Scholar] [CrossRef]
- Jeong, C.J.; Lee, G.; In, I.; Park, S.Y. Concentration-mediated multicolor fluorescence polymer carbon dots. Lumin 2015, 31, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wang, W.; Zhang, Q.; Meng, Z.; Jia, X.; Xi, K. Synthesis of fluorescent carbon nanoparticles from polyacrylamide for fast cellular endocytosis. RSC Adv. 2013, 3, 15589–15591. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, S.; Zhang, S.; Fu, Y.; Wang, L.; Zhao, X.; Yang, B. Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 2015, 3, 5976–5984. [Google Scholar] [CrossRef]
- Tao, S.; Lu, S.; Geng, Y.; Zhu, S.; Redfern, S.A.T.; Song, Y.; Feng, T.; Xu, W.; Yang, B. Design of Metal-Free Polymer Carbon Dots: A New Class of Room-Temperature Phosphorescent Materials. Angew. Chem. Int. Ed. 2018, 57, 2393–2398. [Google Scholar] [CrossRef]
- Liu, B.; Chu, B.; Wang, Y.-L.; Hu, L.-F.; Hu, S.; Zhang, X.-H. Carbon dioxide derived carbonized polymer dots for multicolor light-emitting diodes. Green Chem. 2020, 23, 422–429. [Google Scholar] [CrossRef]
- Sharker, S.M.; Kim, S.M.; Lee, J.E.; Jeong, J.H.; In, I.; Lee, K.D.; Lee, H.; Park, S.Y. In situ synthesis of luminescent carbon nanoparticles toward target bioimaging. Nanoscale 2015, 7, 5468–5475. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Phatake, R.S.; Nabha-Barnea, S.; Zerby, N.; Zhu, J.-J.; Shikler, R.; Lemcoff, N.G.; Jelinek, R. Fluorescent Self-Healing Carbon Dot/Polymer Gels. ACS Nano 2019, 13, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Song, Y.; Zhu, S.; Shao, J.; Yang, B. A new type of polymer carbon dots with high quantum yield: From synthesis to inves-tigation on fluorescence mechanism. Polymer 2017, 116, 472–478. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Kuan, C.; Feng, W.; Zhu, Y. Synthesis of Chitosan-Based Polymer Carbon Dots Fluorescent Materials and Application of Self-Assembled Drug-Loading. Chin. Optic. 2018, 11, 420–430. [Google Scholar]
- Feng, H.; Pan, K.; Lv, X.; Yang, B.; Cui, Z. High performance polymer carbon dots for detection of chromium (VI) ions in water. AIP Conf. Proc. 2017, 1829, 20045. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Tang, P.; Barnych, B.; Zhao, C.; Sun, G.; Ge, M. Design and Synthesis of Core–Shell Carbon Polymer Dots with Highly Stable Fluorescence in Polymeric Materials. ACS Appl. Nano Mater. 2019, 2, 6503–6512. [Google Scholar] [CrossRef]
- Li, G.; Wang, F.; Liu, P.; Chen, Z.; Lei, P.; Xu, Z.; Li, Z.; Ding, Y.; Zhang, S.; Yang, M. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts. Chemosphere 2018, 197, 526–534. [Google Scholar] [CrossRef]
- Robby, A.I.; Lee, G.; Lee, K.D.; Jang, Y.C.; Park, S.Y. GSH-responsive self-healable conductive hydrogel of highly sensitive strain-pressure sensor for cancer cell detection. Nano Today 2021, 39, 101178. [Google Scholar] [CrossRef]
- Lu, S.; Sui, L.; Wu, M.; Zhu, S.; Yong, X.; Yang, B. Graphitic Nitrogen and High-Crystalline Triggered Strong Photoluminescence and Room-Temperature Ferromagnetism in Carbonized Polymer Dots. Adv. Sci. 2018, 6, 1801192. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Zhu, S.; Zhang, S.-T.; Zeng, Q.; Tao, S.; Tian, X.; Li, Y.; Yang, B. Carbonized Polymer Dots with Tunable Room-Temperature Phospho-rescence Lifetime and Wavelength. ACS Appl. Mater. Interfaces 2020, 12, 38593–38601. [Google Scholar] [CrossRef]
- Xia, C.; Tao, S.; Zhu, S.; Song, Y.; Feng, T.; Zeng, Q.; Liu, J.; Yang, B. Hydrothermal Addition Polymerization for Ultrahigh-Yield Carbonized Polymer Dots with Room Temperature Phosphorescence via Nanocomposite. Chem. A Eur. J. 2018, 24, 11303–11308. [Google Scholar] [CrossRef] [PubMed]
- Vallan, L.; Urriolabeitia, E.P.; Ruipérez, F.; Matxain, J.M.; Canton-Vitoria, R.; Tagmatarchis, N.; Benito, A.M.; Maser, W.K. Supramolecular-Enhanced Charge Transfer within Entangled Polyamide Chains as the Origin of the Universal Blue Fluorescence of Polymer Carbon Dots. J. Am. Chem. Soc. 2018, 140, 12862–12869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aji, M.P.; Wati, A.L.; Priyanto, A.; Karunawan, J.; Nuryadin, B.W.; Wibowo, E.; Marwoto, P. Sulhadi Polymer carbon dots from plastics waste upcycling. Environ. Nanotechnol. Monit. Manag. 2018, 9, 136–140. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Lin, M.; Yang, T.; Li, R.S.; Huang, C.Z.; Wang, J.; Li, Y.F. Nitrogen and phosphorus doped polymer carbon dots as a sensitive cellular mapping probe of nitrite. J. Mater. Chem. B 2019, 7, 2074–2080. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.B.; Sharker, S.M.; In, I.; Park, S.Y. Pluronic mimicking fluorescent carbon nanoparticles conjugated with doxorubicin via acid-cleavable linkage for tumor-targeted drug delivery and bioimaging. J. Ind. Eng. Chem. 2016, 43, 150–157. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, L.; Zhou, N.; Zhao, X.; Song, Y.; Maharjan, S.; Zhang, J.; Lu, L.; Wang, H.; Yang, B. The crosslink enhanced emission (CEE) in non-conjugated polymer dots: From the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chem. Commun. 2014, 50, 13845–13848. [Google Scholar] [CrossRef]
- Liu, J.; Li, D.; Zhang, K.; Yang, M.; Sun, H.; Yang, B. One-Step Hydrothermal Synthesis of Nitrogen-Doped Conjugated Carbonized Polymer Dots with 31% Efficient Red Emission for In Vivo Imaging. Small 2018, 14, e1703919. [Google Scholar] [CrossRef]
- Liu, M.-X.; Chen, S.; Ding, N.; Yu, Y.-L.; Wang, J.-H. A carbon-based polymer dot sensor for breast cancer detection using peripheral blood immunocytes. Chem. Commun. 2020, 56, 3050–3053. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liu, M.; Wu, Z.; He, Y.; Ge, Y.; Song, G.; Zhou, J. Fluorescence enhanced detection of water in organic solvents by one-pot synthesis of orange-red emissive polymer carbon dots based on 1, 8-naphthalenediol. Micro Nano Lett. 2020, 15, 469–473. [Google Scholar] [CrossRef]
- Xia, J.; Chen, S.; Zou, G.-Y.; Yu, Y.-L.; Wang, J.-H. Synthesis of highly stable red-emissive carbon polymer dots by modulated polymerization: From the mechanism to application in intracellular pH imaging. Nanoscale 2018, 10, 22484–22492. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, H.; Liu, H.; Liu, M.; Huang, N.; He, Z.; Li, Y.; Chen, Y.; Ding, L. Microwave-assisted facile synthesis of polymer dots as a fluorescent probe for detection of cobalt(II) and manganese(II). Anal. Bioanal. Chem. 2019, 411, 2373–2381. [Google Scholar] [CrossRef]
- Yang, S.; Wang, L.; Zuo, L.; Zhao, C.; Li, H.; Ding, L. Non-conjugated polymer carbon dots for fluorometric determination of met-ronidazole. Microchim. Acta 2019, 186, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.K.; Kundu, S.; De, G. Stable fluorescent CdS: Cu QDs and their hybridization with carbon polymer dots for white light emission. J. Mater. Chem. C 2016, 4, 1665–1674. [Google Scholar] [CrossRef]
- He, C.; Yan, H.; Li, X.; Wang, X. Ultrafast preparation of polymer carbon dots with solid-state fluorescence for white light-emitting diodes. Mater. Res. Express 2019, 6, 065609. [Google Scholar] [CrossRef]
- Sajjad, F.; Yan, Y.-J.; Margetić, D.; Chen, Z.-L. Synthesis and in vitro PDT evaluation of red emission polymer dots (R-CPDs) and pyropheophorbide-α conjugates. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Liu, J.; Geng, Y.; Li, D.; Yao, H.; Huo, Z.; Li, Y.; Zhang, K.; Zhu, S.; Wei, H.; Xu, W.; et al. Deep Red Emissive Carbonized Polymer Dots with Unprecedented Narrow Full Width at Half Maximum. Adv. Mater. 2020, 32, e1906641. [Google Scholar] [CrossRef]
- Qiao, Z.; Huo, Q.; Chi, M.; Veith, G.M.; Binder, A.J.; Dai, S. A Ship-In-A-Bottle Approach to Synthesis of Polymer Dots@ Silica or Polymer Dots@ Carbon Core-Shell Nanospheres. Adv. Mater. 2012, 24, 6017–6021. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, X.; Xu, K.; Dong, X. One-pot synthesis of fluorescent non-conjugated polymer dots for Fe3+ detection and tem-perature sensing. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 240, 118626. [Google Scholar] [CrossRef]
- Xia, J.; Zhuang, Y.-T.; Yu, Y.-L.; Wang, J.-H. Highly fluorescent carbon polymer dots prepared at room temperature, and their ap-plication as a fluorescent probe for determination and intracellular imaging of ferric ion. Microchim. Acta 2017, 184, 1109–1116. [Google Scholar] [CrossRef]
- Xia, J.; Yu, Y.-L.; Wang, J.-H. Fe3+-Catalyzed low-temperature preparation of multicolor carbon polymer dots with the capability of distinguishing D2O from H2O. Chem. Commun. 2019, 55, 12467–12470. [Google Scholar] [CrossRef]
- Zare-Moghadam, M.; Shamsipur, M.; Molaabasi, F.; Hajipour-Verdom, B. Chromium speciation by isophthalic acid-doped polymer dots as sensitive and selective fluorescent probes. Talanta 2020, 209, 120521. [Google Scholar] [CrossRef]
- Lu, S.; Sui, L.; Liu, J.; Zhu, S.; Chen, A.; Jin, M.; Yang, B. Near-Infrared Photoluminescent Polymer-Carbon Nanodots with Two-Photon Fluorescence. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381. [Google Scholar] [CrossRef]
- Adrita, S.H.; Tasnim, K.N.; Ryu, J.H.; Sharker, S.M. Nanotheranostic Carbon Dots as an Emerging Platform for Cancer Therapy. J. Nanotheranostics 2020, 1, 6. [Google Scholar] [CrossRef]
- Mao, L.; Gao, M.; Xue, X.; Yao, L.; Wen, W.; Zhang, X.; Wang, S. Organic-inorganic nanoparticles molecularly imprinted photoelectro-chemical sensor for α-solanine based on p-type polymer dots and n-CdS heterojunction. Anal. Chim. Acta 2019, 1059, 94–102. [Google Scholar] [CrossRef]
- Hu, J.; Liu, S. Engineering Responsive Polymer Building Blocks with Host–Guest Molecular Recognition for Functional Applications. Acc. Chem. Res. 2014, 47, 2084–2095. [Google Scholar] [CrossRef]
- Kickelbick, G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 2003, 28, 83–114. [Google Scholar] [CrossRef]
- Sharker, S.M.; Kim, S.M.; In, I.; Lee, H.; Park, S.Y. Target delivery of β-cyclodextrin/paclitaxel complexed fluorescent carbon nanoparticles: Externally NIR light and internally pH sensitive-mediated release of paclitaxel with bio-imaging. J. Mater. Chem. B 2015, 3, 5833–5841. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, Y.; Li, D.; Yuan, C.; Li, Z.-L.; Sun, L.; Jiang, H.; Ma, J. A sensitive polymer dots fluorescent sensor for determination of α-L-fucosidase activity in human serum. Sens. Actut. B Chem. 2019, 288, 38–43. [Google Scholar] [CrossRef]
- Song, Y.; Chen, J.; Hu, D.; Liu, F.; Li, P.; Li, H.; Chen, S.; Tan, H.; Wang, L. Ratiometric fluorescent detection of biomakers for biological warfare agents with carbon dots chelated europium-based nanoscale coordination polymers. Sens. Actut. B Chem. 2015, 221, 586–592. [Google Scholar] [CrossRef]
- Phuong, P.T.M.; Ryplida, B.; In, I.; Park, S.Y. High performance of electrochemical and fluorescent probe by interaction of cell and bacteria with pH-sensitive polymer dots coated surfaces. Mater. Sci. Eng. C 2019, 101, 159–168. [Google Scholar] [CrossRef]
- Abdullah Issa, M.Z.; Abidin, Z. Sustainable Development of Enhanced Luminescence Polymer-Carbon Dots Composite Film for Rapid Cd2+ Removal from Wastewater. Molecules 2020, 25, 3541. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. 2013, 125, 4045–4049. [Google Scholar] [CrossRef]
- Sun, B.; Zhao, B.; Wang, D.; Wang, Y.; Tang, Q.; Zhu, S.; Yang, B.; Sun, H. Fluorescent non-conjugated polymer dots for targeted cell imaging. Nanoscale 2016, 8, 9837–9841. [Google Scholar] [CrossRef] [PubMed]
- Prianka, T.R.; Subhan, N.; Reza, H.M.; Hosain, M.K.; Rahman, M.A.; Lee, H.; Sharker, S.M. Recent exploration of bio-mimetic nano-material for potential biomedical applications. Mater. Sci. Eng. C 2018, 93, 1104–1115. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Feng, T.; Zheng, C.; Zhu, S.; Yang, B. Carbonized polymer dots: A brand new perspective to recognize luminescent car-bon-based nanomaterials. J. Phys. Chem. Lett. 2019, 10, 5182–5188. [Google Scholar] [CrossRef] [PubMed]
- Pirsaheb, M.; Mohammadi, S.; Salimi, A.; Payandeh, M. Functionalized fluorescent carbon nanostructures for targeted imaging of cancer cells: A review. Microchim. Acta 2019, 186, 231. [Google Scholar] [CrossRef]
- Hakim, L.; Nahar, N.; Saha, M.; Islam, M.S.; Reza, H.M.; Sharker, S.M. Local drug delivery from surgical thread for area-specific anesthesia. Biomed. Phys. Eng. Express 2020, 6, 015028. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; In, I.; Park, S.Y. pH-Responsive NIR-absorbing fluorescent polydopamine with hyaluronic acid for dual targeting and synergistic effects of photothermal and chemotherapy. Biomacromolecules 2017, 18, 1825–1835. [Google Scholar] [CrossRef]
- Li, Q.; Ohulchanskyy, T.; Liu, R.; Koynov, K.; Wu, D.; Best, A.; Kumar, R.; Bonoiu, A.; Prasad, P.N. Photoluminescent Carbon Dots as Biocompatible Nanoprobes for Targeting Cancer Cells in Vitro. J. Phys. Chem. C 2010, 114, 12062–12068. [Google Scholar] [CrossRef]
- Son, J.; Yi, G.; Yoo, J.; Park, C.; Koo, H.; Choi, H.S. Light-responsive nanomedicine for biophotonic imaging and targeted therapy. Adv. Drug Deliv. Rev. 2019, 138, 133–147. [Google Scholar] [CrossRef]
- Ali, E.S.; Sharker, S.M.; Islam, M.T.; Khan, I.N.; Shaw, S.; Rahman, A.; Uddin, S.J.; Shill, M.C.; Rehman, S.; Das, N.; et al. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin. Cancer Biol. 2021, 69, 52–68. [Google Scholar] [CrossRef]
- Sharker, S.M. Hexagonal Boron Nitrides (White Graphene): A Promising Method for Cancer Drug Delivery. Int. J. Nanomed. 2019, 14, 9983–9993. [Google Scholar] [CrossRef] [Green Version]
- Sharker, S.M.; Lee, J.E.; Kim, S.H.; Jeong, J.H.; In, I.; Lee, H.; Park, S.Y. pH triggered in vivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide. Biomaterials 2015, 61, 229–238. [Google Scholar] [CrossRef]
- Kim, S.H.; Sharker, S.M.; Lee, H.; In, I.; Lee, K.D.; Park, S.Y. Photothermal conversion upon near-infrared irradiation of fluorescent carbon nanoparticles formed from carbonized polydopamine. RSC Adv. 2016, 6, 61482–61491. [Google Scholar] [CrossRef]
- Sharker, S.M.; Kang, E.B.; Shin, C.I.; Kim, S.H.; Lee, G.; Park, S.Y. Near-infrared-active and pH-responsive fluorescent poly-mer-integrated hybrid graphene oxide nanoparticles for the detection and treatment of cancer. J. Appl. Poly. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Jeong, C.J.; Sharker, S.M.; In, I.; Park, S.Y. Iron oxide@ PEDOT-based recyclable photothermal nanoparticles with poly (vinylpyr-rolidone) sulfobetaines for rapid and effective antibacterial activity. ACS Appl. Mater. Interfaces 2015, 7, 9469–9478. [Google Scholar] [CrossRef]
- Sharker, S.M.; Kim, S.M.; Lee, J.E.; Choi, K.H.; Shin, G.; Lee, S.; Lee, K.D.; Jeong, J.H.; Lee, H.; Park, S.Y. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. J. Control Release 2015, 217, 211–220. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, J.E.; Sharker, S.M.; Jeong, J.H.; In, I.; Park, S.Y. In Vitro and In Vivo Tumor Targeted Photothermal Cancer Therapy Using Functionalized Graphene Nanoparticles. Biomacromolecules 2015, 16, 3519–3529. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kang, E.B.; Kim, S.H.; Sharker, S.M.; Kong, B.Y.; In, I.; Lee, K.-D.; Park, S.Y. Visible-Light-Driven Photocatalysts of Perfluorinated Silica-Based Fluorescent Carbon Dot/TiO2 for Tunable Hydrophilic–Hydrophobic Surfaces. ACS Appl. Mater. Interfaces 2016, 8, 29827–29834. [Google Scholar] [CrossRef]
- Ji, T.; Guo, B.; Liu, F.; Zeng, Q.; Yu, C.; Du, X.; Jin, G.; Feng, T.; Zhu, S.; Li, F.; et al. Cathode and Anode Interlayers Based on Polymer Carbon Dots via Work Function Regulation for Efficient Polymer Solar Cells. Adv. Mater. Interfaces 2018, 5. [Google Scholar] [CrossRef]
No. | Precursors (Sources) | Synthesis | Reaction Time | Temperature and Solvent | Yield | Ref. |
---|---|---|---|---|---|---|
1 | Polyacrylic acid and ethylenediamine | Hydrothermal | 8 h | 200 °C, deionized water | 30% | [12] |
2 | Polyacrylic acid (PAA) and ethylenediamine (EDA) | Hydrothermal | 8 h | 200 °C, deionized water | 63.10% | [10] |
3 | Chitosan | Hydrothermal | 3 h | 180 °C, deionized water | - | [13] |
4 | Citric acid and ethylenediamine | Hydrothermal | 5 h | 160 °C, distilled water | - | [14] |
5 | Tris(2-aminoethyl)amine and citric acid | Hydrothermal | 6 h | Appropriate temperature, water | - | [15] |
6 | Polyvinyl alcohol | Hydrothermal | 6 h | 220 °C, deionized water | - | [16] |
7 | Disulfide-crosslinked hyaluronic acid | Hydrothermal | 8 h | 180 °C, deionized water | - | [17] |
8 | L-serine and L-tryptophan | Hydrothermal | 8 h | 300 °C, alkaline water (about pH 4) | - | [18] |
9 | Acrylamide and N,N′-Methylenebiacrylamide | Hydrothermal addition polymerization and carbonization strategy | 8 h | 200 °C, deionized water | - | [19] |
10 | Acrylamide and N,N′-Methylenebiacrylamide | Hydrothermal condensation crosslinking and carbonization | 8 h | 200 °C deionized water | 86.7% to 84.6% | [20] |
11 | Citric acid and ethylenediamine | Low Heating | 3 min | 140 °C, ultrapure water | 35% | [21] |
12 | Polypropylene (PP) plastic waste | Heating at 200–300 °C | 20 min | 200–300 °C, ethanol | - | [22] |
13 | Polymerization of ascorbic acid and polyethylenimine | Dehydration by phosphoric acid | 5 h | 90 °C, 5M phosphoric acid | - | [23] |
14 | Pluronic® F-127 | Dehydration by Sulfuric acid | 1 min | 100 °C, H2SO4 | 17% | [24] |
15 | Polyethyleneimine and carbon tetrachloride | Dehydration | 5–6 h | 90–200 °C, deionized water | - | [25] |
16 | Phenylenediamine | Dehydration by HNO3 | 10 h | 200 °C, H2SO4 | - | [26] |
17 | o-phenylenediamine, mphenylenediamine, p-phenylenediamine | Oxidative polymerization using HNO3 and H2O2 | 12 h | Room temperature, HNO3 | - | [27] |
18 | 1,8-naphthalenediol | Using n-propanol solvents | 8 h | 150 °C, n-propanol | - | [28] |
19 | p-phenylenediamine | Oxidative polymerization at 80 °C | 36 h | 80 °C, water | - | [29] |
20 | Polyvinyl alcohol and Ethylene diamine | Microwave-assisted method | 1.50 h | 200 °C, water | - | [30] |
21 | Maleic acid and ethylenediamine | Microwave-assisted | 20 min | 1000 W, deionized water | 89% | [30] |
22 | Polyethyleneimine | Pyrolytic method | 30 min | 180 °C, ultrapure water | - | [31] |
23 | Branched polyethylenimine | Controlled decomposition | 10 min | 200 °C, ethanol | - | [32] |
24 | Citric acid (CA) and urea | Heat-treatment | - | 85 °C, water | 3.75% | [33] |
25 | p-phenylenediamine and FeCl3 | Heat-treatment | 24 h | 120 °C, ultrapure water | - | [34] |
26 | Taxus leaves deep | Solvo-thermal procedure | 5 h | 120 ℃, acetone | 1% | [35] |
27 | Ethylenediamine and carbon tetrachloride | Polymerization reaction | 6 h | 90 °C, deionized water | - | [36] |
28 | Hyperbranched polyethyleneimine and 5-aminosalicylic acid | Amidation reaction | 12 h | 80 °C, water | - | [37] |
29 | Ascorbic acid and diethylenetriamine | - | 72 h | 200 °C, water | - | [38] |
31 | p-Phenylenediamine | - | 24 h | 80 °C, water | - | [39] |
No. | Precursors (Sources) | Fluorescence Quantum Yield | Excitation and Emission Wavelength | Application | Ref. |
---|---|---|---|---|---|
1 | Polyacrylic acid and ethylenediamine | 44.18% | 340 nm and 410 nm | Fluorescence detection | [12] |
2 | Polyacrylic acid (PAA) and ethylenediamine (EDA) | 2.13–32.41% | 410 nm and 494 nm | Metal-free Room-temperature phosphorescence (RTP) materials | [10] |
3 | Chitosan | 66.81% | Excitation dependent emission | Doxorubicin-loading | [13] |
4 | Citric acid and ethylenediamine | - | - | Cr (VI) detects in domestic water | [14] |
5 | Tris(2-aminoethyl)amine and citric acid | 64.5% | 240–360 nm and 445 nm | pH and excellent fluorescent properties | [15] |
6 | Polyvinyl alcohol | - | 365 nm and 402–470 nm | With TiO2 demonstrate excellent photocatalytic activity | [16] |
7 | Disulfide-crosslinked hyaluronic acid | - | - | Skin sensor and sensitive cancer detection | [17] |
8 | L-serine and L-tryptophan | 89.57% | 300 to 420 nm and 489 to 505 nm | Room-temperature ferromagnetism (RTFM) | [18] |
9 | Acrylamide and N,N′-Methylenebiacrylamide | 89% | 320 nm and 380 nm | Room-temperature phosphorescence (RTP) properties | [19] |
10 | Acrylamide and N,N′-Methylenebiacrylamide | 45.58% | excitation-independent and 320 nm to 380 nm | Anti-counterfeit applications | [20] |
11 | Citric acid and ethylenediamine | 13–64% | 350−390 nm and 445–470 nm | Metal ion sensing | [21] |
12 | Polypropylene (PP) plastic waste | - | 400–435 nm and 410–440 nm | Environmental conservation | [22] |
13 | Polymerization of ascorbic acid and polyethylenimine | 3.8% | 350 nm and 487 nm | NO2− analysis in water and milk, and monitoring of nitrite entry into Hep-2 cells | [23] |
14 | Pluronic® F-127 | 3.32% | 365 nm and 470 nm | Multi-color fluorescence | [24] |
15 | Polyethyleneimine and carbon tetrachloride | 2.7% | 400 nm and 475 nm | Cellular uptake mechanism and internalization | [25] |
16 | Phenylenediamine | 10.83–31.54% | 540 nm and 630 nm | Theranostics and real-time diseases tracking | [26] |
17 | o-phenylenediamine, mphenylenediamine, p-phenylenediamine | - | 370–470 nm and 463–550 nm | Detect breast cancer & cancer diagnosis | [27] |
18 | 1,8-naphthalenediol | 2–14.8% | 440 nm and 570–610 nm | Water detection in organic solvents | [28] |
19 | p-phenylenediamine | 7% | 200–350 nm and 350–750 nm | Monitoring the pH fluctuation in HeLa cells | [29] |
20 | Polyvinyl alcohol and Ethylene diamine | 54% | 290–380 nm and 340–390 nm | Cobalt ion (Co2+) and manganese ion (Mn2+) detection | [30] |
21 | Maleic acid and ethylenediamine | 8.50% | 365 nm and 460–625 nm | Self-quenching-resistant solid-state fluorescent | [30] |
22 | Polyethyleneimine | 9% | 365 nm and 320–460 nm | Metronidazole detection in Milk samples | [31] |
23 | Branched polyethylenimine | 13.3% to 58% | 365 nm and 465 nm | Fluorescent paint, and to deposit durable coatings on glass substrates | [32] |
24 | Citric acid (CA) and urea | 11.2% | 330–389 nm and 380–750 nm | White light-emitting diodes (WLEDs) | [33] |
25 | p-phenylenediamine and FeCl3 | - | 300–400 nm and 400–550 nm | Photodynamic therapy (PDT) for the treatment of cancer | [34] |
26 | Taxus leaves deep | 31–59% | 350–680 nm and 413–750 nm | Biocompatible through excreted via kidneys and hepatobiliary system | [35] |
27 | Ethylenediamine and carbon tetrachloride | 8.6–17.3% | 340–460 nm and 440–520 nm | Adsorption capabilities for transition-metal ions | [36] |
28 | Hyperbranched polyethyleneimine and 5-aminosalicylic acid | 53.3% | 350–400 nm and 482–506 nm | Environmental monitoring | [37] |
29 | Ascorbic acid and diethylenetriamine | 47% | 350 nm and 430 nm | Intracellular imaging of ferric ions in HeLa cells | [38] |
30 | p-Phenylenediamine | 2.35–4.95% | 330–400 nm and 460–600 nm | Optical responses to H2O and D2O | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharker, S.M.; Do, M. Nanoscale Carbon-Polymer Dots for Theranostics and Biomedical Exploration. J. Nanotheranostics 2021, 2, 118-130. https://doi.org/10.3390/jnt2030008
Sharker SM, Do M. Nanoscale Carbon-Polymer Dots for Theranostics and Biomedical Exploration. Journal of Nanotheranostics. 2021; 2(3):118-130. https://doi.org/10.3390/jnt2030008
Chicago/Turabian StyleSharker, Shazid Md., and Minjae Do. 2021. "Nanoscale Carbon-Polymer Dots for Theranostics and Biomedical Exploration" Journal of Nanotheranostics 2, no. 3: 118-130. https://doi.org/10.3390/jnt2030008
APA StyleSharker, S. M., & Do, M. (2021). Nanoscale Carbon-Polymer Dots for Theranostics and Biomedical Exploration. Journal of Nanotheranostics, 2(3), 118-130. https://doi.org/10.3390/jnt2030008