PTT-Mediated Inhibition of Cancer Proliferation and Tumor Progression by DARPin-Coated Gold Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Protein Production
2.3. Synthesis of AuNPs and DARPin-AuNP Conjugates
2.4. Flow Cytometry
2.5. Confocal Microscopy
2.6. Dynamic Light Scattering
2.7. In Vitro Cell Cytotoxicity Measurements
2.8. Animals
3. Results
3.1. Binding of DARPin-AuNPs to Cells
3.2. Effect of DARPin-AuNPs on Viability of HER-2-Positive Cells
3.3. Effect of DARPin-AuNPs on Tumor Progression and Growth in a Mouse Model
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gradishar, W.J.; Anderson, B.O.; Abraham, J.; Aft, R.; Agnese, D.; Allison, K.H.; Blair, S.L.; Burstein, H.J.; Dang, C.; Elias, A.D.; et al. Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2020, 18, 452–478. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Peng, C.; Xie, X.; Peng, F. New Advances in Targeted Therapy of HER2-Negative Breast Cancer. Front. Oncol. 2022, 12, 828438. [Google Scholar] [CrossRef]
- Shuel, S.L. Targeted cancer therapies: Clinical pearls for primary care. Can. Fam. Physician 2022, 68, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Victoir, B.; Croix, C.; Gouilleux, F.; Prie, G. Targeted Therapeutic Strategies for the Treatment of Cancer. Cancers 2024, 16, 461. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Yu, G.; Yang, Z.; Yue, L.; Zhang, X.; Sun, C.; Wei, J.; Rao, L.; Chen, X.; Wang, R. Supramolecular Polymerization-Induced Nanoassemblies for Self-Augmented Cascade Chemotherapy and Chemodynamic Therapy of Tumor. Angew. Chem. Int. Ed. 2021, 60, 17570. [Google Scholar] [CrossRef]
- Vines, J.B.; Yoon, J.H.; Ryu, N.E.; Lim, D.J.; Park, H. Gold Nanoparticles for Photothermal Cancer Therapy. Front. Chem. 2019, 7, 167. [Google Scholar] [CrossRef]
- Kumar, P.P.P.; Lim, D.K. Photothermal Effect of Gold Nanoparticles as a Nanomedicine for Diagnosis and Therapeutics. Pharmaceutics 2023, 15, 92349. [Google Scholar] [CrossRef]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef]
- Yang, W.; Liang, H.; Ma, S.; Wang, D.; Huang, J. Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment. Sustain. Mater. Technol. 2019, 22, e00109. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, M. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Binz, H.K.; Amstutz, P.; Kohl, A.; Stumpp, M.T.; Briand, C.; Forrer, P.; Grutter, M.G.; Pluckthun, A. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat. Biotechnol. 2004, 22, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Jost, C.; Schilling, J.; Tamaskovic, R.; Schwill, M.; Honegger, A.; Pluckthun, A. Structural basis for eliciting a cytotoxic effect in HER2-overexpressing cancer cells via binding to the extracellular domain of HER2. Structure 2013, 21, 1979–1991. [Google Scholar] [CrossRef] [PubMed]
- Tamaskovic, R.; Simon, M.; Stefan, N.; Schwill, M.; Pluckthun, A. Designed ankyrin repeat proteins (DARPins) from research to therapy. Methods Enzym. 2012, 503, 101–134. [Google Scholar] [CrossRef]
- Verdurmen, W.P.; Luginbuhl, M.; Honegger, A.; Pluckthun, A. Efficient cell-specific uptake of binding proteins into the cytoplasm through engineered modular transport systems. J. Control. Release 2015, 200, 13–22. [Google Scholar] [CrossRef]
- Gabriele, F.; Palerma, M.; Ippoliti, R.; Angelucci, F.; Pitari, G.; Ardini, M. Recent Advances on Affibody and DARPin-Conjugated Nanomaterials in Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 8680. [Google Scholar] [CrossRef]
- Stumpp, M.T.; Dawson, K.M.; Binz, H.K. Beyond Antibodies: The DARPin Drug Platform. BioDrugs 2020, 34, 423–433. [Google Scholar] [CrossRef]
- Proshkina, G.; Deyev, S.; Ryabova, A.; Tavanti, F.; Menziani, M.C.; Cohen, R.; Katrivas, L.; Kotlyar, A. DARPin_9-29-Targeted Mini Gold Nanorods Specifically Eliminate HER2-Overexpressing Cancer Cells. ACS Appl. Mater. Interfaces 2019, 11, 34645–34651. [Google Scholar] [CrossRef]
- Steiner, D.; Forrer, P.; Pluckthun, A. Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J. Mol. Biol. 2008, 382, 1211–1227. [Google Scholar] [CrossRef]
- Deyev, S.; Proshkina, G.; Ryabova, A.; Tavanti, F.; Menziani, M.C.; Eidelshtein, G.; Avishai, G.; Kotlyar, A. Synthesis, Characterization, and Selective Delivery of DARPin-Gold Nanoparticle Conjugates to Cancer Cells. Bioconjug. Chem. 2017, 28, 2569–2574. [Google Scholar] [CrossRef]
- Proshkina, G.M.; Shramova, E.I.; Mirkasyimov, A.B.; Griaznova, O.Y.; Konovalova, E.V.; Schulga, A.A.; Deyev, S.M. The Barnase-Barstar-based pre-targeting strategy for enhanced antitumor therapy in vivo. Biochimie, 2024; in press. [Google Scholar] [CrossRef]
- Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 2005, 41, 207–234. [Google Scholar] [CrossRef]
- Shramova, E.I.; Filimonova, V.P.; Frolova, A.Y.; Pichkur, E.B.; Fedotov, V.R.; Konevega, A.L.; Deyev, S.M.; Proshkina, G.M. HER2-specific liposomes loaded with proteinaceous BRET pair as a promising tool for targeted self-excited photodynamic therapy. Eur. J. Pharm. Biopharm. 2023, 193, 208–217. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proshkina, G.M.; Shramova, E.I.; Serova, E.V.; Myachev, E.A.; Mirkasymov, A.B.; Deyev, S.M.; Kotlyar, A.B. PTT-Mediated Inhibition of Cancer Proliferation and Tumor Progression by DARPin-Coated Gold Nanoparticles. J. Nanotheranostics 2025, 6, 2. https://doi.org/10.3390/jnt6010002
Proshkina GM, Shramova EI, Serova EV, Myachev EA, Mirkasymov AB, Deyev SM, Kotlyar AB. PTT-Mediated Inhibition of Cancer Proliferation and Tumor Progression by DARPin-Coated Gold Nanoparticles. Journal of Nanotheranostics. 2025; 6(1):2. https://doi.org/10.3390/jnt6010002
Chicago/Turabian StyleProshkina, Galina M., Elena I. Shramova, Ekaterina V. Serova, Egor A. Myachev, Aziz B. Mirkasymov, Sergey M. Deyev, and Alexander B. Kotlyar. 2025. "PTT-Mediated Inhibition of Cancer Proliferation and Tumor Progression by DARPin-Coated Gold Nanoparticles" Journal of Nanotheranostics 6, no. 1: 2. https://doi.org/10.3390/jnt6010002
APA StyleProshkina, G. M., Shramova, E. I., Serova, E. V., Myachev, E. A., Mirkasymov, A. B., Deyev, S. M., & Kotlyar, A. B. (2025). PTT-Mediated Inhibition of Cancer Proliferation and Tumor Progression by DARPin-Coated Gold Nanoparticles. Journal of Nanotheranostics, 6(1), 2. https://doi.org/10.3390/jnt6010002