New Spiro[cycloalkane-pyridazinone] Derivatives with Favorable Fsp3 Character
Abstract
:1. Introduction
2. Synthesis of Spiro[cycloalkane-pyridazinone] Derivatives
2.1. Synthesis of the Starting Materials
2.2. Friedel–Crafts and Grignard Reactions
2.3. Formation of Pyridazinone Ring
2.4. N-Substituted Pyridazinone Derivatives
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Inglese, J.; Auld, D.S. Application of High Throughput Screening (HTS) Techniques: Overview of Applications in Chemical Biology. Wiley Encycl. Chem. Biol. 2009, 2, 260–274. [Google Scholar] [CrossRef]
- Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 2011, 10, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752–6756. [Google Scholar] [CrossRef]
- Lovering, F. Escape from Flatland 2: Complexity and promiscuity. Med. Chem. Commun. 2013, 4, 515–519. [Google Scholar] [CrossRef]
- Hansson, M.; Pemberton, J.; Engkvist, O.; Feierberg, I.; Brive, L.; Jarvis, P.; Zander-Balderud, L.; Chen, H. On the Relationship between Molecular Hit Rates in High-Throughput Screening and Molecular Descriptors. J. Biomol. Screen. 2014, 19, 727–737. [Google Scholar] [CrossRef] [Green Version]
- Hirata, K.; Kotoku, M.; Seki, N.; Maeba, T.; Maeda, K.; Hirashima, S.; Sakai, T.; Obika, S.; Hori, A.; Hase, Y.; et al. SAR Exploration Guided by LE and Fsp3: Discovery of a Selective and Orally Efficacious RORγ Inhibitor. ACS Med. Chem. Lett. 2016, 7, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Troelsen, N.; Shanina, E.; Gonzalez-Romero, D.; Danková, D.; Jensen, I.; Sniady, K.; Nami, F.; Zhang, H.; Rademacher, C.; Cuenda, A.; et al. The 3F Library: Fluorinated Fsp3-rich Fragments for Expeditious 19F-NMR-based Screening. Angew. Chem. Int. Ed. 2020, 59, 2204–2210. [Google Scholar] [CrossRef] [PubMed]
- Kombo, D.C.; Tallapragada, K.; Jain, R.; Chewning, J.; Mazurov, A.A.; Speake, J.D.; Hauser, A.T.; Toler, S. 3D Molecular Descriptors Important for Clinical Success. J. Chem. Inf. Model. 2013, 53, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Nettles, J.H.; Jenkins, H.J.; Bender, A.; Deng, Z.; Davies, J.W.; Glick, M. Bridging Chemical and Biological Space: “Target Fishing” Using 2D and 3D Molecular Descriptors. J. Med. Chem. 2006, 49, 6802–6810. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, T.J.; Macdonald, S.J.F. The impact of ring count on compound developability–are too many aromatic rings a liability in drug design? Drug Discov. Today 2009, 14, 1011–1020. [Google Scholar] [CrossRef]
- Ritchie, T.J.; Macdonald, S.J.F.; Young, R.J.; Pickett, S.D. The impact of aromatic ring count on compound developability: Further insights by examining carbo- and hetero-aromatic and –aliphatic ring types. Drug Discov. Today 2011, 16, 164–171. [Google Scholar] [CrossRef]
- Taylor, F.F.; Faloon, W.W. The role of potassium in the natriuretic response to a steroidal lactone (SC-9420). J. Clin. Endocrinol. Metab. 1959, 19, 1683–1687. [Google Scholar] [CrossRef]
- Li, D.B.; Rogers-Evans, M.; Carreira, E.M. Synthesis of novel azaspiro[3.4]octanes as multifunctional modules in drugdiscovery. Org. Lett. 2011, 13, 6134–6136. [Google Scholar] [CrossRef]
- Burkhard, J.A.; Guérot, C.; Knust, H.; Carreira, E.M. Expanding the Azaspiro[3.3]heptane Family: Synthesis of Novel Highly Functionalized Building Blocks. Org. Lett. 2012, 14, 66–69. [Google Scholar] [CrossRef]
- Li, D.B.; Rogers-Evans, M.; Carreira, E.M. Construction of multifunctional modules for drug discovery: Synthesis of novel thia/oxa-azaspiro[3.4]octanes. Org. Lett. 2013, 15, 4766–4769. [Google Scholar] [CrossRef]
- Carreira, E.M.; Fessard, T.C. Four-membered ring-containing spirocycles: Synthetic strategies and opportunities. Chem. Rev. 2014, 144, 8257–8322. [Google Scholar] [CrossRef]
- Zheng, Y.; Tice, C.M.; Singh, S.B. The use of spirocyclic scaffolds in drug discovery. Bioorg. Med. Chem. Lett. 2014, 24, 3673–3682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beekman, A.M.; Barrow, R.A. Fungal Metabolites as Pharmaceuticals. Aust. J. Chem. 2014, 67, 827–843. [Google Scholar] [CrossRef]
- Carone, L.; Oxberry, S.G.; Twycross, R.; Charlesworth, S.; Mary Mihalyo, M.; Wilcock, A. Spironolactone. J. Pain Symptom Manag. 2017, 53, 288–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodick, D.W.; Lipton, R.B.; Ailani, J.; Lu, K.; Finnegan, M.; Trugman, J.M.; Szegedi, A. Ubrogepant for the Treatment of Migraine. N. Engl. J. Med. 2019, 381, 2230–2241. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Tice, C.M. The utilization of spyrocyclic scaffolds in novel drug discovery. Exp. Opin. Drug Discov. 2016, 11, 831–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wermuth, C.G. Are pyridazines privileged structures? MedChemComm 2011, 2, 935–941. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, D.; Bansal, R. Pyridazinone: An attractive lead for antiinflammatory and analgesic drug discovery. Future Med. Chem. 2017, 9, 95–127. [Google Scholar] [CrossRef]
- Abouzid, K.; Bekhit, S.A. Novel anti-inflammatory agents based on pyridazinone scaffold; design, synthesis and in vivo activity. Bioorg. Med. Chem. 2008, 16, 5547–5556. [Google Scholar] [CrossRef]
- Gokce, M.; Colak, S.C.; Kupeli, E.; Sahin, M.F. Synthesis and Analgesic and Anti-inflammatory Activity of 6-Phenyl/(4-methylphenyl)-3(2H)-pyridazinone-2-propionamide Derivatives. Arzneimittelforschung 2009, 59, 357–363. [Google Scholar] [CrossRef]
- Asif, M. The Pharmacological Importance of Some Diazine Containing Drug Molecules. Sci. Online Publ. Trans. Org. Chem. 2014, 1, 1–17. [Google Scholar]
- Akhtar, W.; Shaquiquzzaman, M.; Akhter, M.; Verma, G.; Khan, M.F.; Alam, M.M. The therapeutic journey of pyridazinone. Eur. J. Med. Chem. 2016, 123, 256–281. [Google Scholar] [CrossRef]
- Vigil-De Gracia, P.; Lasso, M.; Ruiz, E.; Vega-Malek, J.C.; De Mena, F.T.; Lopez, J.C. Severe hypertension in pregnancy: Hydralazine or labetalol: A randomized clinical trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2006, 128, 157–162. [Google Scholar] [CrossRef]
- Papp, Z.; Édes, I.; Fruhwald, S.; De Hert, S.G.; Salmenperä, M.; Leppikangas, H.; Mebazaa, A.; Landoni, G.; Grossini, E.; Caimmi, P.; et al. Levosimendan: Molecular Mechanisms and Clinical Implications: Consensus of Experts on the Mechanisms of Action of Levosimendan. Int. J. Cardiol. 2012, 159, 82–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.B., Jr.; Combs, D.W.; Tobia, A.J.; Johnson, R.W. Bemoradan-A Novel Inhibitor of the Rolipram-Insensitive Cyclic AMP Phosphodiesterase from Canine Heart Tissue. Biochem. Pharmacol. 1991, 42, 679–683. [Google Scholar] [CrossRef]
- Kan, J.P.; Mouget-Goniot, C.; Worms, P.; Biziere, K. Effect of the antidepressant minaprine on both forms of monoamine oxidase in the rat. Biochem. Pharm. 1986, 35, 973–978. [Google Scholar] [CrossRef]
- Contreras, J.M.; Rival, Y.M.; Chayer, S.; Bourguignon, J.J.; Wermuth, C.G. Aminopyridazines as acetylcholinesterase inhibitors. J. Med. Chem. 1999, 42, 730–741. [Google Scholar] [CrossRef]
- Aleeva, G.N.; Molodavkin, G.M.; Voronina, T.A. Comparison of antidepressant effects of azafan, tianeptine, and paroxetine. Bull. Exp. Biol. Med. 2009, 148, 54–56. [Google Scholar] [CrossRef]
- Asif, M. Overview on Emorfazone and other related 3(2H)pyridazinone analogues displaying analgesic and anti-Inflammatory activity. Ann. Med. Chem. Res. 2015, 1, 1–9. [Google Scholar]
- Goldberg, A.D.; Nicklas, J.; Goldstein, S. Effectiveness of imazodan for treatment of chronic congestive heart failure. Am. J. Cardiol. 1991, 68, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Avcı, D.; Bahçeli, S.; Tamer, O.; Atalay, Y. Comparative study of DFT/B3LYP, B3PW91, and HSEH1PBE methods applied to molecular structures and spectroscopic and electronic properties of flufenpyr and amipizone. Can. J. Chem. 2015, 93, 1147–1156. [Google Scholar] [CrossRef]
- Ukena, D.; Rentz, K.; Reiber, C.; Sybrecht, G.W. Effects of the mixed phosphodiesterase III/IV inhibitor, zardaverine, on airway function in patients with chronic airflow obstruction. Respir. Med. 1995, 89, 441–444. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, R.F.; Robertson, D.W.; Franklin, R.B.; Sandusky, G.E.; Dies, J.F.; McNay, J.L.; Hayes, J.S. Indolidan: A potent, long-acting cardiotonic and inhibitor of Type IV cyclic AMP phosphodiesterase. Cardiovasc. Drug Rev. 1990, 8, 303–322. [Google Scholar] [CrossRef]
- Summerfield, N.J.; Boswood, A.; Ogrady, M.R.; Gordon, S.G.; McEwan, J.D.; Oyama, M.A.; Smith, S.; Patteson, M.; French, A.T.; Culshaw, G.J.; et al. Efficacy of Pimobendan in the prevention of congestive heart failure or sudden death in doberman pinschers with preclinical dilated cardiomyopathy (The Protect Study). J. Vet. Int. Med. 2012, 26, 1337–1349. [Google Scholar] [CrossRef] [Green Version]
- Inskeep, P.B.; Reed, A.E.; Ronfeld, R.A. Pharmacokinetics of zopolrestat, a carboxylic acid aldose reductase inhibitor, in normal and diabetic rats. Pharm. Res. 1991, 8, 1511–1515. [Google Scholar] [CrossRef] [PubMed]
- Dyck, B.; Markison, S.; Zhao, L.; Tamiya, J.; Grey, J.; Rowbottom, M.W.; Zhang, M.; Vickers, T.; Sorensen, K.; Norton, C.; et al. A thienopyridazinone-based melanin-concentrating hormone receptor 1 antagonist with potent in vivo anorectic properties. J. Med. Chem. 2006, 49, 3753–3756. [Google Scholar] [CrossRef]
- Giovannoni, M.P.; Vergelli, C.; Biancalani, C.; Cesari, N.; Graziano, A.; Biagini, P.; Gracia, J.; Gavaldà, A.; Dal Piaz, V. Novel pyrazolopyrimidopyridazinones with potent and selective phosphodiesterase 5 (PDE5) inhibitory activity as potential agents for treatment of erectile dysfunction. J. Med. Chem. 2006, 49, 5363–5371. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Kamei, K.; Koga, T.; Akima, M.; Kuroki, T.; Ohi, N. Novel antiasthmatic agents with dual activities of thromboxane A2 synthetase inhibition and bronchodilation. 1. 2-[2-(1-Imidazolyl)alkyl]-1(2H)-phthalazinones. J. Med. Chem. 1993, 36, 4052–4060. [Google Scholar] [CrossRef]
- Badger, A.M.; Schwartz, D.A.; Picker, D.H.; Dorman, J.W.; Bradley, F.C.; Cheeseman, E.N.; DiMartino, M.J.; Hanna, N.; Mirabellill, C.K. Antiarthritic and Suppressor Cell Inducing Activity of Azaspiranes: Structure-Function Relationships of a Novel Class of Immunomodulatory Agents. J. Med. Chem. 1990, 33, 2963–2970. [Google Scholar] [CrossRef]
- Norris, W.S.G.P.; Thorpe, J.F. TheFormation and Stability of spiro-Cornpounds. Part V. Derivatives of cycloHexanespirocyclohexane and of cycloPentanespirocyclohexane. J. Chem. Soc. 1921, 119, 1199–1210. [Google Scholar] [CrossRef]
- Stengel, T.; Maier, T.; Mann, A.; Stadlwieser, J.; Flockerzi, D.; Pahl, A.; Benediktus, E.; Hessmann, M.; Kanacher, T.; Hussong, R.; et al. Novel Phthalazinone-Pyrrolopyrimidinecarboxamide Derivatives. WO2012/1719000, 28 December 2012. [Google Scholar]
- Van der Mey, M.; Hatzelmann, A.; Van der Laan, I.J.; Sterk, G.J.; Thibaut, U.; Timmerman, H. Novel Selective PDE4 Inhibitors. 1. Synthesis, Structure-Activity Relationships, and Molecular Modeling of 4-(3,4-Dimethoxyphenyl)-2H-phthalazin-1-ones and Analogues. J. Med. Chem. 2001, 44, 2511–2522. [Google Scholar] [CrossRef]
- Bölcskei, H.; Mák, M.; Dravecz, F.; Domány, G. Synthesis of deuterated dextromethorphan derivatives. ARKIVOC 2008, 3, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Sepsey Für, C.; Riszter, G.; Gerencsér, J.; Szigetvári, A.; Dékány, M.; Hazai, L.; Keglevich, G.; Bölcskei, H. Synthesis of Spiro[cycloalkane-pyridazinones] with High Fsp3 Character. Lett. Drug Discov. Des. 2020, 17, 731–744. [Google Scholar] [CrossRef]
- Sepsey Für, C.; Horváth, E.J.; Szigetvári, A.; Dékány, M.; Hazai, L.; Keglevich, G.; Bölcskei, H. Synthesis of Spiro[cycloalkane-pyridazinones] with High Fsp3 Character Part 2. Lett. Org. Chem. 2020. [Google Scholar] [CrossRef]
Starting Material | R1 | R2 | Product | Fsp3 | LogP | CLogP |
---|---|---|---|---|---|---|
5a | OCH3 | H | 6a | 0.50 | 2.91 | 3.4955 |
5a | CH3 | H | 6b | 0.50 | 3.53 | 3.7746 |
5a | Cl | H | 6c | 0.46 | 3.60 | 4.0642 |
5a | OCH3 | OCH3 | 6d | 0.53 | 2.79 | 3.17319 |
5b | CH3 | H | 7a | 0.47 | 3.11 | 3.2156 |
5b | OCH3 | H | 7b | 0.47 | 2.50 | 2.9365 |
5b | OCH3 | H | 7c1 | 0.47 | 2.50 | 2.9365 |
5b | OCH3 | OCH3 | 7d | 0.50 | 2.37 | 2.61419 |
5b | CH3 | H | 7e1 | 0.47 | 3.11 | 3.2156 |
5b | Cl | H | 7f | 0.43 | 3.18 | 3.5052 |
5b | Cl | H | 7g1 | 0.43 | 3.18 | 3.5052 |
Starting Material | R1 | R2 | Product | Fsp3 | LogP | CLogP |
---|---|---|---|---|---|---|
6a | OCH3 | H | 8a | 0.50 | 2.91 | 2.753 |
6b | CH3 | H | 8b | 0.50 | 3.52 | 3.333 |
6c | Cl | H | 8c | 0.47 | 3.59 | 3.547 |
6d | OCH3 | OCH3 | 8d | 0.53 | 2.78 | 2.492 |
7a | CH3 | H | 9 | 0.46 | 3.10 | 2.774 |
7f | Cl | H | 10 | 0.43 | 3.17 | 2.988 |
7b | OCH3 | H | 11a 11b1 | 0.46 0.46 | 2.49 2.49 | 2.194 2.194 |
7c | OCH3 | OCH3 | 12 | 0.50 | 2.36 | 1.933 |
Starting Material | R1 | R3 | Product | Fsp3 | LogP | CLogP |
---|---|---|---|---|---|---|
6a 6h | OCH3 | CH3 | 13a 13b1 | 0.53 0.53 | 3.14 3.14 | 2.845 2.845 |
6a | OCH3 | Ph | 14 | 0.36 | 4.81 | 4.744 |
6b | CH3 | Ph | 15 | 0.36 | 5.42 | 5.324 |
6c | Cl | Ph | 16 | 0.33 | 5.49 | 5.538 |
7a | CH3 | Ph | 17 | 0.33 | 5.00 | 4.765 |
7f | Cl | Ph | 18 | 0.30 | 5.07 | 4.979 |
8b | CH3 | CH3 | 19 | 0.53 | 3.76 | 3.425 |
8c | Cl | CH3 | 20 | 0.47 | 3.83 | 3.639 |
9 | CH3 | CH3 | 21 | 0.50 | 3.34 | 2.866 |
10 | Cl | CH3 | 22 | 0.44 | 3.41 | 3.080 |
8a | OCH3 | Bn | 23 | 0.39 | 4.87 | 5.077 |
8b | CH3 | Bn | 24 | 0.39 | 5.49 | 5.657 |
8c | Cl | Bn | 25 | 0.36 | 5.56 | 5.871 |
9 | CH3 | Bn | 26 | 0.36 | 5.07 | 5.098 |
10 | Cl | Bn | 27 | 0.33 | 5.14 | 5.312 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepsey Für, C.; Bölcskei, H. New Spiro[cycloalkane-pyridazinone] Derivatives with Favorable Fsp3 Character. Chemistry 2020, 2, 837-848. https://doi.org/10.3390/chemistry2040055
Sepsey Für C, Bölcskei H. New Spiro[cycloalkane-pyridazinone] Derivatives with Favorable Fsp3 Character. Chemistry. 2020; 2(4):837-848. https://doi.org/10.3390/chemistry2040055
Chicago/Turabian StyleSepsey Für, Csilla, and Hedvig Bölcskei. 2020. "New Spiro[cycloalkane-pyridazinone] Derivatives with Favorable Fsp3 Character" Chemistry 2, no. 4: 837-848. https://doi.org/10.3390/chemistry2040055
APA StyleSepsey Für, C., & Bölcskei, H. (2020). New Spiro[cycloalkane-pyridazinone] Derivatives with Favorable Fsp3 Character. Chemistry, 2(4), 837-848. https://doi.org/10.3390/chemistry2040055