Effect of the Enantiomeric Ratio of Eutectics on the Results and Products of the Reactions Proceeding with the Participation of Enantiomers and Enantiomeric Mixtures
Abstract
:1. Introduction
2. Separation of Non-Racemic Enantiomeric Mixtures—Eutectic Composition
3. The Effect of the Eutectic Composition of the Racemic Compound on the Diastereomeric Separation
4. The Effect of the Resolving Agent (Enantiomeric Mixture) on the Diastereomeric Separation
5. Solvent and Time Dependence of Diastereomeric Mixture Separation by the Effect of the Eutectic Composition
5.1. Role of the Solvent—The Effect of the Eutectic Composition
5.2. Role of the Crystallization Time—The Effect of Kinetic and Thermodynamic Control on the Eutectic Composition
5.3. When the eeEuResAg ~ eeDia/Determinant Role of the Kinetic Control
5.4. When the eeEuResAg ~ eeDia/Thermodynamic Control is Decisive
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Girard, C.; Kagan, H.B. Nonlinear Effects in Asymmetric Synthesis and Stereoselective Reactions: Ten Years of Investigation. Angew. Chem. Int. Ed. 1998, 37, 2922–2959. [Google Scholar] [CrossRef]
- Soloshonok, V.A. Remarkable amplification of the self-disproportionation of enantiomers on achiral-phase chromatography columns. Angew. Chem. Int. Ed. 2006, 45, 766–769. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, V.; Pavlova, T.N. Paradoxes of symmetry: Homochirality, cryptochiral reactions, chiral field, memory, and induction, chiral and racemic environment. Curr. Org. Chem. 2017, 21, 872–888. [Google Scholar] [CrossRef] [Green Version]
- Pálovics, E.; Schindler, J.; Faigl, F.; Fogassy, E. Physical Separations: Behavior of Structurally Similar Molecules in the Resolution Processes. In Comprehensive Chirality; Carreira, E.M., Yamamoto, H., Eds.; Elsevier Sciences: Amsterdam, The Netherlands, 2012; Volume 8, pp. 91–95. [Google Scholar]
- Pálovics, E.; Faigl, F.; Fogassy, E. Separation of the Mixtures of Chiral Compounds by Crystallization. In Advances in Crystallization Processes; Mastai, Y., Ed.; InTech: London, UK, 2012; pp. 1–37. [Google Scholar]
- Roozeboom, H.W.B. Löslichkeit und Schmelzpunkt als Kriterien für racemische Verbindungen, pseudoracemische Mischkrystalle und inaktive Konglomerate. Z. Phys. Chem. 1899, 28, 494–517. [Google Scholar] [CrossRef]
- Jacques, J.; Wilen, S.H.; Collet, A. Enantiomers, Racemates and Resolution; Wiley-Interf.: New York, NY, USA, 1881. [Google Scholar]
- Fogassy, E.; Faigl, F.; Ács, M. Selective reactions of enantiomeric-mixtures. Tetrahedron Lett. 1981, 22, 3093–3096. [Google Scholar] [CrossRef]
- Pasteur, L. Memoires sur la relation qui peut exister entre la forme crystalline et al composition chimique, et sur la cause de la polarization rotatoire. Acad. Sci. 1848, 26, 535–538. [Google Scholar]
- Klussmann, M.; Izumi White, A.J.P.; Armstrong, A.; Blackmod, D.G. Emergence of solution-phase homochirality via crystal engineering of amino acid. J. Am. Chem. Soc. 2007, 129, 7657–7660. [Google Scholar] [CrossRef]
- Klussmann, M.; Iwamura, H.; Mathew, S.P.; Wells, D.H.; Pandya, U.; Armstrong, A.; Blackmond, D.G. Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature 2006, 441, 621–623. [Google Scholar] [CrossRef]
- Faigl, F.; Fogassy, E.; Nógrádi, M.; Pálovics, E.; Schindler, J. Separation of non-racemic mixtures of enantiomers: An essential part of optical resolution. Org. Biomol. Chem. 2010, 8, 947–959. [Google Scholar] [CrossRef]
- Bálint, J.; Egri, G.; Kiss, V.; Gajary, A.; Juvancz, Z.; Fogassy, E. Unusual phenomena during the resolution of 6-fluoro-2-methyl-1,2,3,4-tetrahydroquinoline (FTHQ): Thermodynamic-kinetic control. Tetrah. Asymmetry 2002, 12, 3435–3439. [Google Scholar] [CrossRef]
- Pálovics, E.; Szeleczky, Z.; Bagi, P.; Faigl, F.; Fogassy, E. Regularities between Separations of Enantiomeric and Diastereoisomeric Mixtures. Prediction of the Efficiency of Diastereomeric/ Enantiomeric Separations on the Basis of Behaviour of Enantiomeric Mixtures. Period. Polytech. Chem. Eng. 2015, 59, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Marthi, K.; Larsen, S.; Ács, M.; Jászay, Z.; Fogassy, E. Enantiomer associations in the crystal structures of racemic and (2S,3R)-(−)-3-hydroxy-2-(4-methoxyphenyl)-2,3-dihydro-1,5-benzothiazepin-4(5H)-one. Acta. Chem. Scand. 1996, 50, 906–913. [Google Scholar] [CrossRef] [Green Version]
- Marthi, K.; Larsen, S.; Ács, M.; Fogassy, E. Enantiomer assosiations in the crystal structures of racemic and (2S,3S)-(+)-3-hydroxy-2-(4-methoxyphenyl)-2,3-dihydro-1,5-benzothiazepin-4(5H)-one. J. Mol. Struct. 1996, 374, 347–355. [Google Scholar]
- Bosits, M.H.; Pálovics, E.; Madarász, J.; Fogassy, E. New discoveries in enantiomeric separation of racemic tofisopam Hindawi. J. Chem. 2019, 2019. [Google Scholar] [CrossRef]
- Czugler, M.; Csöregh, I.; Kálmán, A.; Faigl, F.; Ács, M. Crystal structures of the diastereomeric salt pair of the prostaglandin intermediate (1R,2S)-(+)-cis-2-hydroxycyclopent-4-enylacetic acid with (S)- and (R)-1-phenyl-ethyl-amine. J. Mol. Struct. 1989, 196, 157–170. [Google Scholar] [CrossRef]
- Koshima, H.; Matsuura, T.J. Chiral crystallization of achiral organic compounds. Synth. Org. Chem. 1998, 56, 268–279. [Google Scholar] [CrossRef]
- Koshima, H.; Nakagawa, T.; Miyamoto, H.; Toda, F. Synthesis, structure, and discrimination of chiral bimolecular crystals by using diphenylacetic acid and aza aromatic compounds. J. Org. Chem. 1997, 62, 6322–6325. [Google Scholar] [CrossRef]
- Fogassy, E.; Nogradi, M.; Palovics, E.; Schindler, J. Resolution of enantiomers by non-conventional methods. Synth. Stuttg. 2005, 10, 1555–1568. [Google Scholar] [CrossRef]
- Fogassy, E.; Nogradi, M.; Kozma, D.; Egri, G.; Pálovics, E.; Kiss, V. Optical resolution methods. Org. Biomol. Chem. 2006, 4, 3011–3030. [Google Scholar] [CrossRef]
- Faigl, F.; Fogassy, E.; Nográdi, M.; Pálovics, E.; Schindler, J. Strategies in optical resolution (a practical guide). Tetrahedron Asymmetry 2008, 4, 519–553. [Google Scholar] [CrossRef]
- Szeleczky, Z.; Bagi, P.; Pálovics, E.; Fogassy, E. The effect of the eutectic composition on the outcome of kinetically and thermodinamically controlled resolutios that are based on the formation of diastereomers. Tetrahedron Asymmetry 2015, 26, 377–384. [Google Scholar] [CrossRef]
- Viedma, C.; McBride, J.M.; Kahr, B.; Cintas, O. Enantiomer-Specific Oriented Attachment: Formation of Macroscopic Homochiral Chrystal Aggregates from a Racemic System. Angew. Chem. Int. Ed. 2013, 52, 10545–10548. [Google Scholar] [CrossRef] [PubMed]
- Pálovics, E.; Fogassy, E. A Presumable Mechanism of the Separation of Diastereomeric and Enantiomeric Mixtures. J. Chromatogr. Sep. Tech. 2017, 8, 391. [Google Scholar]
- Pálovics, E. Separation of Mixtures of Chiral Compounds by their Distribution between Different Phases. J. Chromatogr. Sep. Tech. 2019, 10, 422. [Google Scholar]
- Oaki, Y.; Imai, H. Stereospecific morphogenesis of aspartic acid helical crystals through molecular recognition. Langmuir 2007, 23, 5466–5470. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kodama, K.; Saigo, K. Supramolecular architecture consisting of an enantiopure amine and an achiral carboxylic acid: Application to the enantioseparation of racemic alcohols. Org. Lett. 2004, 6, 2941–2944. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kodama, K.; Saigo, K. Enantioselective inclusion of chiral alkyl aryl sulfoxides in a supramolecular helical channel consisting of an enantiopure 1,2-amino alcohol and an achiral carboxylic acid. Tetrahedron Asymmetry 2008, 19, 295–301. [Google Scholar] [CrossRef]
- Weissbuch, I.; Leiserowitz, L.; Lahav, M. Stochastic “mirror symmetry breaking” via self-assembly reactivity and amplification of chirality: Relevance to abiotic conditions. Top. Curr. Chem. 2005, 259, 123–165. [Google Scholar]
- Tamura, R.; Iwama, S.; Gonnade, R.G. Control of polymorphic transition inducing preferential enrichment. Cryst. Eng. Comm. 2011, 13, 5269–5280. [Google Scholar] [CrossRef] [Green Version]
- Pálovics, E.; Fogassy, E. Memory of Chiral Molecules Define Their Interactions and the Results of Resolution Processes. Am. J. Chem. Eng. 2018, 6, 65–71. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pálovics, E.; Bánhegyi, D.F.; Fogassy, E. Effect of the Enantiomeric Ratio of Eutectics on the Results and Products of the Reactions Proceeding with the Participation of Enantiomers and Enantiomeric Mixtures. Chemistry 2020, 2, 787-795. https://doi.org/10.3390/chemistry2030051
Pálovics E, Bánhegyi DF, Fogassy E. Effect of the Enantiomeric Ratio of Eutectics on the Results and Products of the Reactions Proceeding with the Participation of Enantiomers and Enantiomeric Mixtures. Chemistry. 2020; 2(3):787-795. https://doi.org/10.3390/chemistry2030051
Chicago/Turabian StylePálovics, Emese, Dorottya Fruzsina Bánhegyi, and Elemér Fogassy. 2020. "Effect of the Enantiomeric Ratio of Eutectics on the Results and Products of the Reactions Proceeding with the Participation of Enantiomers and Enantiomeric Mixtures" Chemistry 2, no. 3: 787-795. https://doi.org/10.3390/chemistry2030051
APA StylePálovics, E., Bánhegyi, D. F., & Fogassy, E. (2020). Effect of the Enantiomeric Ratio of Eutectics on the Results and Products of the Reactions Proceeding with the Participation of Enantiomers and Enantiomeric Mixtures. Chemistry, 2(3), 787-795. https://doi.org/10.3390/chemistry2030051